Shellscripting and Buildtools

Joseph Hallett

February 5, 2024

E% University of
[BEI BRISTOL

Whats all this about?

I've written a lot of code over the years:
Assembly, C and Java as an engineer
Commonlisp for my own projects
Haskell to build compilers
PostScript to draw really efficient diagrams
IATEX to publish books
...several a dozen other things too

Which language have | written the most code in?

Which language do | use to solve most tasks?

Which language do | like the least?

Shellscripting!

Normally we type commands for the terminal on a commandline...
» But we can automate them and stick them into scripts

Anything you have to do more than once...
Write a script for it!

> Saves a tonne of time

» Often easier than writing a full program

For example...

#! /bin/sh ’~/.local/bin/knotwords 'st[Maeo]pid'
Solve
GREP=grep
if [$(uname) = "OpenBSD"]; then - stupid
Use GNU Grep on OpenBSD
GREP=ggrep
fi ’~/.local/bin/wordbind superlite striae

${GREP} -Pi "~$$11$" /usr/share/dict/words

- 7 sullies
#1 Jusr/bin/env bash - 7 suppers
Solve Puzzmo's wordbind - 7 suppler
Just/share/dict /word - 7 surlier
DICT=/usr/share/dict/woxrds
REGEX="$(sed -e "s/[\t]//g" <<<"${x3" \ - 8 peerless
| sed -e "s/\(.\)/\1x/g")" - 8 supplest
<"${DICT?" awk <<EOS - 8 supplier
/ASIREGEXI\$/ § .
printf(\"%d\t%s\n\", length(\$0), \$0) - 8 supplies
t - 8 suppress
EOS \ - 8 surliest

| sort -n

Or for example...

#! /usr/bin/env bash

if [$1 = "should" -a $2 = "also" -a $3 = "run"]; then
shift 3
gum confirm "Run 'doas $*'?" && doas $*

elif [$1 = "should" -a $2 = "also" -a $3 = "remove"]; th
gum confirm "Delete '$4'?" && doas rm -fr "$§431"

else
2>&1 printf "[WARNING] You should read the commands you"
2>&1 printf "paste more carefully\n"

fi

Sometimes when I upgrade my

computer it tells me to delete some

files or run some commands:

You should also run rcctl

restart pf

Copying and pasting the precise text

is a pain...

» Can I just copy the whole line and

run that?

(Of course I can... should I though?)

Or for a further example...

After I upgrade my computer I need to run a
#1 Jusz/bineny bash couple of standard commands.

Fix kitty » [can never remember them
/usr/local/opt/bin/fix-kitty
» Batch them up!

i Update sources

cd /usr/src && cvs -gq up -Pd -A

cd /usr/ports && cvs -q up -Pd -A

cd /usr/xenocara && cvs -q up -Pd -A

So whats this really about?

Shellscripting is about automating all those tedious little jobs
> Byzantine syntax (based on shell commands)
> Awful for debugging
> Requires magical knowledge
» Probably the most useful thing you'll ever learn

Luckilly we have help

Shell scripting is somewhat magical, and there are lots of gotchas...
https://www.shellcheck.net
Wonderful tool to spot unportable/dangerous things in shell scripts
» Commandline tool available
> Run it on everything you ever write
» shellcheck is great

shellcheck ‘command -v knotwords®

In /home/joseph/.local/bin/knotwords line 2:

GREP=grep

A--A SC2209 (warning): Use var=$(command) to assign output (or quote to assign string).

In /home/joseph/.local/bin/knotwords line 3:
if [$(uname) = "OpenBSD"]; then
LR N SC2046 (warning): Quote this to prevent word splitting.

For more information:
https://www.shellcheck.net/wiki/SC2046 -- Quote this to prevent word splitt...
https://www.shellcheck.net/wiki/SC2209 -- Use var=$(command) to assign outp...

https://www.shellcheck.net

So how do you write one?

Start the file with the shebang #! then the path to the interpreter of the script plus any
arguments:

For portable POSIX shellscripts #! /bin/sh/
For less portable BASH scripts #! /usr/bin/env bash
Then
» chmod +x my-script.sh
» . /my-script.sh
The rest of the file will be run by the interpretter you specified
» or sh my-script.sh if you don't want to/can’t mark it executable.

(Hey this is also why Python scripts start #! /usr/bin/env python3)

Why env?

Hang on, you might be saying, I know that bash is always in /bin/bash... canIjust put that as
my interpretter path?
Yes, but...

In the beginning /bin was reserved for just
system programs

>

>

>

and /usr/bin for admin installed
programs

and /usr/local/bin for locally installed
programs

and /opt/bin for optional installed
programs

and /opt/local/bin for optional locally
installed programs

and ~/.local/bin for a users programs

...oh and sometimes theyre even mounted
on different disks!

This is kinda madness.
> So most Linux systems said look we'll just

stick everything in /usx/bin and stop
using multiple partitions

But some said no it should be /bin, one
said /Applications/, and others stuck
them in /usx/bin but symlinked them to
/bin

> And on some systems users grew fed up of

the outdated system bash and compiled
their own and installed it in
~/.local/bin...

» ..and ever tried using Python venv?

env

ENV (1) General Commands Manual ENV (1)
NAME
env - set and print environment
SYNOPSIS
env [-i] [name=value ...] [utility [argument ...]]
DESCRIPTION

env executes utility after modifying the environment as specified on the
command line. The option name=value specifies an environment variable,
name, with a value of value.

What env does is look through the PATH and tries to find the program specified and runs it.

..Path?

There is an environment variable called PATH
that tells the system where all the programs
are:

> Colon separated list of paths

If you want to alter it you can add a line like to
your shell’s config

‘export PATH:"${PATH}:/extIa/directory/to/searchw

Your shells config is possibly in ~/ .profile
but it often varies... check the man page for
your $$SHELL}

Also some shells have different syntax (e.g.
fish)...

$ tr ':' $'\n' <<< $PATH
/home/joseph/.local/share/python/bin
/bin

/usr/bin

/sbin

/usr/sbhin

/usT/X11R6/bin

/usr/local/bin

/usr/local/sbin
/home/joseph/.local/bin
/usr/local/opt/bin

/usr/games

/usr/local/games
/usr/local/jdk-17/bin
/home/joseph/.local/share/go/bin

Basic Syntax
Shell scripts are written by chaining commands together

A; B run A thenrun B
A | B run A and feed its output as the input to B
A && B run A and if successful run B
A || B run A and if not successful run B

How does it know if its successful?
Programs return a 1 byte exit value (e.g. C main ends with return 0;)

> This gets stored into the variable ${?} after every command runs.
> 0 indicates success (usually)
> >0 indicates failure (usually)

This can then be used with commands like test:

do_long_running_command
test $? -eq 0 && printf "Command succeeded\n"

Or the slightly shorter:

do_long_running_command
[$? -eq 0] && printf "Command succeeded\n"

Bonus puzzle

Why is this the case?

[$2 -eq 0] # works
[$? -eq O] # doesn't work

Variables

All programs have variables... Shell languages are no different:

To create a variable:

‘ GREETING="Hello World!"

(No spaces around the =)

To use a variable

‘ echo "$IGREETING}"

If you want your variable to exist in the programs you start as an environment variable:

‘ export GREETING

To get rid of a variable

‘ unset GREETING

Well...

Variables in shell languages tend to act more like macro variables.
> There’s no penalty for using one thats not defined.

NAME="Joe"'
unset NAME
echo "Hello, '${NAME}'"

Hello, "'
If this bothers you:

set -0 nounset
echo "$$NAME:? variable 1 passed to program}"

(There are a bunch of these shell parameter expansion tricks beyond : ? which can do search
and replace, string length and various magic...)

Standard variables

$40% Name of the script
$$1%, $42%, $43%.. Arguments passed to your script

$4#% The number of arguments passed to your script
$$@% and ${xt All the arguments

Control flow

If statements and for loops, with globbing, are available:

0r [-x myscript.sh J;

O0r [[-x myscript.sh]]; if using Bash

if test -x myscript.sh; then
./myscript.sh

fi

for file in *.py; do
python "$$filet"
done

Other loops

Well...okay you only have for really... but you can do other things with it:

for nin 12 34 5; do
echo -n "${nt "
done

seq 5

‘ ‘seq s, 5

12345

12345

1,2,3,4,5

for n in $(seq 5); do
echo -n "$$nt "
done

IFS = In Field Separator
IFS=',"
for n in $(seq -s, 5); do

12345

echo -n "$int "
done

12345

Case statements too!

Remove everything upto the last / from ${SHELL}
case "${SHELLiHEX/3" in

bash) echo "I'm using bash!" ;;

zsh) echo "Ooh fancy a zsh user!" ;;

fish) echo "Something's fishy!"

*) echo "Ooh something else!"
esac

Basename and Dirname

In the previous example I used the "${VAR#HEx/ " trick to remove everything up to the last /...
Which gives you the name of the file neatly...

...but I have to look this up everytime I use it.

Instead we can use $(basename "${shell}") to get the same info.

echo "${SHELL}"

echo "${SHELL#HEx/3"

echo "$(basename "$$SHELLE?")"
echo "$(dirname "${SHELL}")"

You can even use it to remove file extensions:

for £ in %.jpg; do
convert "$if:" "$(basename "${ft" .jpg).png"
done

Pipelines

As part of shell scripting, its often useful to build commands out of chains of other commands.
For example I can use ps to list all the processes on my computer and grep to search.

» How many processes is Firefox using?

ps -A | grep -i firefox

44179 2?2 Spu
60731 2?2 Ip
57651 ?? IpU
78402 2?2 SpU
53121 ?? SpU
79118 ?2? IpU
38067 22 IpU
33456 ?? IpU
82061 ?? R/3

:29.59 firefox

:00.08 /usr/local/lib/firefox/firefox -contentproc -appDir

:00.30 /usr/local/lib/firefox/firefox -contentproc fe3aaaed
:08.66 /usr/local/lib/firefox/firefox -contentproc $1ddabe3
:01.79 /usr/local/lib/firefox/firefox -contentproc {5f676d2
:00.21 /usr/local/lib/firefox/firefox -contentproc $40690cl
:00.20 /usr/local/lib/firefox/firefox -contentproc $6be551d
:00.20 /usr/local/lib/firefox/firefox -contentproc $8c295ac
:00.00 grep -i firefox

[ocNoNoRoNoNoNoNoNo)

Too much info!

Lets use the awk command to cut it to just the first and fourth columns!

ps -A | grep -i firefox | awk '{print $1, $4%'

44179 firefox

60731 /usr/local/lib/firefox/firefox
57651 /usr/local/lib/firefox/firefox
78402 /usr/local/lib/firefox/firefox
53121 /usr/local/lib/firefox/firefox
79118 /usr/local/lib/firefox/firefox
38067 /usr/local/lib/firefox/firefox
33456 /usr/local/lib/firefox/firefox
24087 grep

Why is grep in there?

Oh yes... when we search for firefox we create a new process with firefox in its commandline.
Lets drop the last line

ps -A | grep -i firefox | awk '{print $1, $43%' | head -n -1

44179 firefox
60731 /usr/local/lib/firefox/firefox
57651 /usr/local/lib/firefox/firefox
78402 /usr/local/lib/firefox/firefox
53121 /usr/local/lib/firefox/firefox
35192 /usr/local/lib/firefox/firefox
46680 /usr/local/lib/firefox/firefox
9850 /usr/local/lib/firefox/firefox
40081 /usr/local/lib/firefox/firefox
44225 /usr/local/lib/firefox/firefox
3307 /usr/local/lib/firefox/firefox

And really I'd just like a count of the number of processes

ps -A | grep -i firefox | awk '{print $1, $4%' | head -n -1 | wc -1

11

Other piping techniques

> The | pipe copies standard output to > The <(echo hello) pipe is completely
standard input... magical...

. . » It runs the command in the parentheses
> The > pipe copies standard output to a outputting to a temporary file (descriptor)...

named file... (e.g. ps -A > It replaces itself with the path to that file
>processes.txt, see also the tee

command)

So you can do things like:

diff <(echo Hello World) \

» The >> pipe appends standard output to a <(echo Hello World | tr T R)

named file...

> The < pipe reads a file into standard input...

(e.g. grep firefox <processes.txt) lcl

< Hello World
> The <<< pipe takes a string and places it on —--

standard input > Hello WoR1ld
> You can even copy and merge streams if

you know their file descriptors (e.g.

appending 2>&1 to a command will run it

with standard error merged into standard

output)

Different shells

(Just use bash unless you care about extreme portability in which case use POSIX sh)
Typical Shells
sh POSIX shell
bash Bourne Again shell (default on Linux)
zsh Z Shell (default on Macs), like bash but with more features
ksh Korne shell (default on BSD)

Other shells
dash simplified faster bash, used for booting on Linux
Busybox sh simplified bash you find on embedded systems

Weird shells
fish More usable shell (but different incompatible syntax)
elvish Nicer syntax for scripting (but incompatible with POSIX)
nushell Nicer output (but incompatible, and weird)

One last thing...

Suppose you want to run a shellscript as a network service.
» Normally you'd have to run a webserver and do some socket programming
»> None of which is ever usually available for shell scripts

Inetd

inetd is super server that can launch any program when someone connects to a socket
» stdin will be the input from the network
» stdout will be sent back on the same socket

Check out £ingerd for an ancient social network built like this...

Suppose we wanted to build some code

An awful lot of the things we do with a computer are about format shifting
We do this when we compile code:

» cc -c library.c -o library.o
» cc hello.c library.o -o hello
When we archive files:
» zip -r coursework.zip coursework
When we draw figures:
» dot -Tpdf flowchart.dot -0 flowchart.pdf

Can we automate this?

YES!

We could write a shellscript and stick all the tasks in one place...

#! /Jusr/bin/env bash

cc -c library.c -o library.o

cc hello.c library.o -o hello

zip -r coursework.zip coursework

dot -Tpdf flowchart.dot -0 flowchart.pdf

But can we do better than this?

»> Do we really need to recompile the C program if only our flowchart has changed?
» Can we generalise build patterns?

Make

Make in an ancient tool for automating builds.
» Developed by Stuart Feldman in 1976
» Takes rules which tell you how to build files
» Then follows them to build the things you need!
Two main dialects of it (nowadays):
BSD Make More old fashioned, POSIX
GNU Make More featureful, default on Linux
In practice, unless your developing a BSD every one uses GNU Make
» If youre on a Mac, or BSD box install GNU Make and try gmake if things don't work

Makefiles

Rules for Make are placed into a Makefile and look like the following:

hello: hello.c library.o
cc -o hello hello.c library.o

library.o: library.c
cc -c -o library.o library.c

coursework.zip: coursework
zip -r coursework.zip coursework

flowchart.pdf: flowchart.dot
dot -Tpdf flowchart.dot -0 flowchart.pdf

If you ask make to build hello it will figure out what it needs to do:

$ make hello
cc -c -o library.o library.c
cc -0 hello hello.c library.o

First line specifies how to build what from which source files
> The rest of the TAB indented block is a shellscript (ish)

Making changes

If you alter files... Make is smart enough to only rerun the steps you need:
For example if you edit hello.c and rebuild:

$ make hello
cc -0 hello hello.c library.o

But if you edit 1ibrary. c it can figure out it needs to rebuild everything

$ make hello
cc -c -o library.o library.c
cc -o hello hello.c library.o

Phony targets

As well as rules for how to make files you can have phony targets that don’t depend on files but
just tell make what to do when they're run
Often a Makefile will include a phony:

all typically first rule in a file (or PHONY: all clean
marked .default): depends on
everything you'd like to build all: hello coursework.zip flowchart.pdf
clean deletes all generated files clean:

X . git clean -dfx
install installs the program

hello: hello.c library.o

$ make cc -o hello hello.c library.o
cc -c -o library.o library.c . L oqs
cc -o hello.o hello.c library.o library.o: library.c .
zip -r coursework.zip coursework cc -c -o library.o library.c
dot -Tpdf flowchart.dot -0 flowchart.pdf .

coursework.zip: coursework

zip -r coursework.zip coursework

flowchart.pdf: flowchart.dot
dot -Tpdf flowchart.dot -0 flowchart.pdf

Pattern rules

(So far, everything should have worked in GNU and BSD Make... here on out we're in GNU land)
What if we wanted to add an extra library to our hello programs? We could go and update the
Makefile but its better to generalise!

CC=clang
CFLAGS=-Wall -03

.PHONY: all clean
all: hello coursework.zip flowchart.pdf
clean:

git clean -dfx

hello: hello.c library.o extra-library.o

e O
%.0: %.c

$(CC) $(CFLAGS) -c -0 $@ $<

‘.
%1 %

.C
$(CC) $(CFLAGS) -o $@ $<

3

%.zip: %

zip -r $@ $<

%.pdf: %.dot
dot -Tpdf $< -0 $@

Implicit pattern rules

Actually because Make is so old, it knows about compiling C (and Fortran/Pascal...) code
already:

.PHONY: all clean
all: hello coursework.zip flowchart.pdf
clean:
git clean -dfx
hello: hello.c library.o extra-library.o

%.zip: %

zip -r $@ $<

%.pdf: %.dot
dot -Tpdf $< -0 $@

Lets get even more general!

Suppose we wanted to add more figures... we could add dependencies on all to build them or...

.PHONY: all clean
figures=$(patsubst .dot,.pdf,$(wildcard *.dot))

all: hello coursework.zip $ifigures?
clean:

git clean -dfx
hello: hello.c library.o extra-library.o

%.zip: %

zip -r $@ $<

%.pdf: %.dot
dot -Tpdf $< -0 $@

Make is crazy powerful

I love Make...
» [abuse it for compiling everything
» For distributing reproducible science studies
» For building and deploying websites
Pattern rules and the advanced stuff is neat...
» ..but if you never use it I won't be offended
> Make is one of those tools that you'll come back to again and again over your careers.
» ..and there’s a bunch of tricks I haven't shown you ; -)
Go and read the GNU Make Manual
» Its pretty good for a technical document

Just type make

When you get a bit of software... and you find a Makefile in there...
Just type make!

> (and make sure your projects build in the same way!)

(Actually often you'll have to type . /configure then make)
»> No I'm not going to teach you autotools don't worry!

Limitations of Make

I love Make but it has one big weakness

» Modern development makes extensive use of external libraries...
But Make is rubbish at dealing with them:

» Doesn't know how to fetch dependencies

> Doesn't track versions beyond source is newer than object
LanguageTool is a cool little Java grammar checker:

» How many libraries does just the core of the tool make use of?

mvn dependency:tree -D outputType=dot | dot -Tpdf

This is surely too many?

com.google.guavafailureaccessar:1.0.1-compile
[[o-apache commons commons-lang3ar:3.12.0comple |

[rg apacho commons commons textar.1.10.0.compilo

com.google.code.findbugs:jsr305:jar:3.0.2:compile

org checkerframework.checker qualar:3.5 0:compile |

com.google guavarguavajar:30.1-jre-compile
ory.carrot2:morfologilcfsasar:2.1.9:compile

‘ com.google.errorprone:error_prone_annotationsar:2.3.4-compile ‘

org.carrot2:morfologik-stemming jar:2.1.9:compile
com.carrotsearchihppear:0.8.2:compile
netloomchild:seqmentjar:2.0.1:compile

[< 22compie |

net.arnxgsonicjar:1.2.11:compile
‘com.ntellj:annotationser:12.0:compile

org jetbrains:annotations:jar:20.1.0:compile

org.apache lucene:lucene-core:jar:5.5.

compile.

[h backward. sscompie |

133 compl |
Pr——

Javax measure:unit-apijar:1.0:compilo

tech, i

Javax xml bind:jaxiapiar:2.3.0:compilo

commons.1 0.5-compil ‘

| com.sun. s fastiosetFastiatosofaci 2.1 3:compils |

lasafish,

Javax.activationjavax.activation-apiar:1.2.0:compile

org.languagetoollanguagetool-core;jar:6.0- SNAPSHOT

o notjav: 5.12.1.compll L 12.1:compil
- - e T
ch.qos. 210zest |

In the old days...

Traditionally you'd have to go download all the dependencies by hand...
» And then compile and install them
> Very tedious and error prone

So we automated it!

Modern build tooling

(Almost) every language comes with its own library management tooling
> Lets developers specify dependencies
» Tells compiler how to rebuild the project

...which means for every language you use you need to learn its build tools...
> Yay?

(Honestly, I still use Make but I'm old and cantankerous)

So now we have...

Commonlisp ASDF and Quicklisp
Go Gobuild
Haskell Cabal
Java Ant, Maven, Gradle...
JavaScript NPM
Perl CPAN
Python Distutils and requirements.txt
R CRAN
Ruby Gem
Rust Cargo
IATEX CTAN and TeXlive
...and many more.

And they’re all different

Very little similarity between any of them.
> You need to learn the ones you use.
» Well play in the labs with Maven for Java a little bit

Maven Quickstart

mkdir /tmp/src

cd /tmp/szc

mvn archetype:generate \
-DgroupId=uk.ac.bristol.cs \
-DartifactId=hello \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DinteractiveMode=false

[INFO] Scanning for projects...

[INFO]

[INFO] ---------mmmmmmmm < org.apache.maven:standalone-pom >-------------------

[INFO] Building Maven Stub Project (No POM) 1

[INFO] -------mmmmmmmm e [pom J--mmmmmmmm e

[INFO]

[INFO] >>> maven-archetype-plugin:3.2.1:generate (default-cli) > generate-sources @ standalone-pom >>>
[INFO]

[INFO] <<< maven-archetype-plugin:3.2.1:generate (default-cli) < generate-sources @ standalone-pom <<<
[INFO]

[INFO]

[INFO] --- maven-archetype-plugin:3.2.1:generate (default-cli) @ standalone-pom ---

[INFO] Generating project in Batch mode

[INFO] == == == = mmm e m e

[INFO] Using following parameters for creating project from 0ld (1.x) Archetype: maven-archetype-quickstart:1.0

[INFO] -- - - oo o m oo m oo oo oo
[INFO] Parameter: basedir, Value: /tmp/src

[INFO] Parameter: package, Value: uk.ac.bristol.cs

[INFO] Parameter: groupId, Value: uk.ac.bristol.cs

[INFO] Parameter: artifactId, Value: hello

[INFO] Parameter: packageName, Value: uk.ac.bristol.cs

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] project created from 0ld (1.x) Archetype in dir: /tmp/src/hello

[INFO] === = mmm = mm o o o o s o o o o o e o oo
[INFO] BUILD SUCCESS

[INFO] == == === mm e
[INFO] Total time: 4.256 s

...and after spewing all that...

find /tmp/src -type £

YYYVYYVYVYVVYVYYVYY

/tmp/src/hello/pom.xml

/tmp/src/hello/sxc/main/java/uk/ac/bristol/cs/App.Jjava
/tmp/src/hello/sxc/test/java/uk/ac/bristol/cs/AppTest.java
/tmp/src/hello/target/maven-status/maven-compiler-plugin/compile/default-compile/createdFiles.1st
/tmp/src/hello/target/maven-status/maven-compiler-plugin/compile/default-compile/inputFiles.1st
/tmp/src/hello/target/maven-status/maven-compiler-plugin/testCompile/default-testCompile/createdFiles.1lst
/tmp/src/hello/target/maven-status/maven-compiler-plugin/testCompile/default-testCompile/inputFiles.1st
/tmp/src/hello/target/classes/uk/ac/bristol/cs/App.class
/tmp/src/hello/target/test-classes/uk/ac/bristol/cs/AppTest.class
/tmp/src/hello/target/surefire-reports/uk.ac.bristol.cs.AppTest.txt
/tmp/src/hello/target/surefire-reports/TEST-uk.ac.bristol.cs.AppTest.xml
/tmp/src/hello/target/maven-archiver/pom.properties

/tmp/src/hello/target/hello-1.0-SNAPSHOT. jar

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instanc
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"
<modelVersion>4.0.0</modelVersion>
<groupId>uk.ac.bristol.cs</groupId>
<artifactId>hello</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</vexrsion>
<name>hello</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

And if we try and build...

‘ mvn package

[INFO] Scanning for projects...

[INFO]

[INFO] -- -< uk.ac.bristol.cs:hello >--

[INFO] Building hello 1.0-SNAPSHOT

[INFO] ------mmmmmmmmmmmm e oo [Jar J-----c-cmmmmmmm i -
[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ hello ---

[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory /tmp/src/hello/src/main/resources

[INFO]

[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ hello ---

[INFO] Nothing to compile - all classes are up to date

[INFO]

[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @ hello ---

[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory /tmp/src/hello/src/test/resources

[INFO]

[INFO] --- maven-compiler-plugin:3.1:testCompile (default-testCompile) @ hello ---
[INFO] Nothing to compile - all classes are up to date

[INFO]

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ hello ---

[INFO] Surefire report directory: /tmp/src/hello/target/surefire-reports

Running uk.ac.bristol.cs.AppTest
Tests run: 1, Failures: 0, Errors: O, Skipped: O, Time elapsed: 0.018 sec

Results :
Tests run: 1, Failures: O, Errors: 0, Skipped: @

[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ hello ---

Other useful commands

mvn test run the test suite
mvn install install the JAR into your local JAR packages
mvn clean delete everything
And if I'm being a bit snarky...
https://gradle.oxrg A better Java build tool

(That doesn't work everywhere and is much worse than Maven when you try and do more complex things...)

https://gradle.org

Wrap up

Language specific build tools exist

» You should probably use them

> (but I still use good ol’ make a lot more)
Makefiles let you shift things between different filetypes

» And avoid rebuilding things that don’t need to be rebuilt
Shellscripts let you automate everything

> You're gonna end up writing them in anger

» Laziness is good

» Run everything through shellcheck

Aside
Sometimes you'll find you pull a project and it uses a certain build system and you just know
youre going to have to spend a day fighting it.

...please don't use CMake.

