.Vé University of
Y BRISTOL 23 April 2024

Cryptography

An introduction to OpenSSL, PGP and Let's
Encrypt

Manolis Samanis 1 oristol.ac.uk

Elic University of
BRISTOL 23 April 2024

A Brief intro to cryptography

* Need: To protect applications communication

* Goals: data confidentiality, data integrity, authentication, and non-
repudiation

 Network-based attacks: eavesdropping, IP spoofing, connection
hijacking, and tampering

Not easy to use cryptographic algorithms in a secure and reliable manner !

2 oristol.ac.uk

-wé University of
Y BRISTOL 23 April 2024

Why cryptography IS Important?

[=] login page 5
&~ = O o (L & testphp.vulnweb.com/login.php Ei wes 3 1:7 m >» e
¥ Most Visited D Offensive Security @& Kali Linux € Kali Docs @) Kali Tools @ Exploit-DB >

fDacunetix FeR-AlR-R g

Acunetix Web Vulnerability Scanner

home @ categories @ artists disclaimer | your cart | guestbook | AJAX Demo

search art If you are already registered please enter your login information below:
—

Browse calegories Usemame : | |

Browse artists Password © | |

el CaES [ieoin |

Signup

You can also signup here.

Your profile Signup disabled. Please use the username test and the password test.

Cur guestbook
AJAX Demo

Links

Security art "
PHP scanner

PHP vuln help

Fractal Explorer

About Us Privacy Policy | Contact Us

3 oristol.ac.uk

Elic University of
BRISTOL 23 April 2024

Why we need SSL/TLS?

* Cryptographic protocols are difficult to implement

* Not easy to use cryptographic algorithms in a secure and reliable
manner

* The algorithms are just the building blocks in the protocols

* Cryptographic protocols need to cover and resist all known attacks
e Attackers can perform tampering to data

* Many cryptographic protocols have limited applicability

e SSL makes the security of network connection easier

SSL/TLS =

provide nowadays the most common security services for TCP-based connection
Adds transparent confidentiality authentication and integrity to TCP connections

4 oristol.ac.uk

-wé University of
Y BRISTOL

Types of cryptographic algorithms: symmetric key

encryption

Symmetric key Symmetric key

G20, E

Original Encryption Encrypted Decryption Original
document algorithm document algorithm document

I J

5 oristol.ac.uk

Elic University of
BRISTOL

Advantages & Disadvantages of symmetric keys

Efficient & faster: suitable
for large amount of data
(streaming)

Simpler: it includes less
computational steps and
effort

More suitable for
embedded systems and loT
industrial devices: in some
case where we have
resource-constrained
environments

23 April 2024

Single Point of Failure:
Encrypts and decrypts only
with a single key and must
keep safe!

Limited Authentication:
Only the one with the key
can decrypt the message

Key Management: Revoke,
rotation hard in large
environments with many
users

oristol.ac.uk

-wé University of
Y BRISTOL

Types of cryptographic algorithms: asymmetric key
encryption (Public key encryption)

® ®

Bob’s public Bob’s p vate
key
Original Encryption Encrypted Decryption Original
document algorithm document algorithm document
@ @
Alice Bob

7 oristol.ac.uk

Elic University of
BRISTOL 23 April 2024

Advantages & Disadvantages of Public keys

* Distribution: use of public * Slow: For large messages

key only (rel'ie.s on trust 'in typically slower and more
the authenticity of public computationally intensive

keys)

* Non-Repudiation, with
certificates verify the
authenticity and integrity of * Key size: Produced keys

* Not for large data: used for
key exchange protocols

messages significantly larger than

« Authentication: third symmetric keys(increased
parties can validate bandwidth and storage
certificates sent with public requirements)
keys

8 oristol.ac.uk

Elic University of
BRISTOL

Types of cryptographic algorithms: Cryptographic
hash functions

* These are checksum algorithms (i.e. MD5 128bits SHA1 160bits -
safer)

e Hash functions converts data into a fixed-size checksum (message
digest)

* Any change to the data gives different output (tampering)
 The output reveals no info about the data
* Impossible to find two inputs to produce same checksum

* Practically impossible to algorithmically reconstruct the input
(one-way)

* Qutput twice as large as the symmetric key algorithm

9 oristol.ac.uk

-wé University of
Y BRISTOL

Hash functions demo T

message = input(“Enter the message to hash with md5: ")
md5 = hashlib.md5(message.encode())
« Password Storage print ("Hash message with SHA1 128 bits: "+ str(md5))
solution
message = input("Enter the message to hash with shal: ").encode('utf-8')
e Protect software sha = hashlib.shal(message)
release shél = sha.hexdlgest(). .
print ("Hash message with SHA1 160 bits: "+ shal)

message = input("Enter the message to hash with sha256: ").encode('utf-8')
sha = hashlib.sha256(message)

sha256 = sha.hexdigest()

print ("Hash message with SHA1 256 bits: "+ sha256)

message = input("Enter the message to hash with sha512: ").encode('utf-8')
sha = hashlib.sha512(message)

sha512 = sha.hexdigest()

print ("Hash message with SHA1 512 bits: "+ shab512)

10 oristol.ac.uk

-wé University of
Y BRISTOL

Types of cryptographic algorithms: Message Authentication Codes (MACSs)

A
A

mesSage

message

>
-

Hi() | | compare

K = secret key, MAC is supported in SSL and in OpenSSL as only HMAC
Ensure integrity for the “message digest”

11 oristol.ac.uk

.Vé University of
Y BRISTOL

Types of cryptographic algorithms: Digital signatures

O¢®

* Aform of public key cryptography
* Used to provide digital identity
authentication and encryption

GﬁO

e Public key and private key are

Digital
Signature
Verification

Hash value

1)

Original
document

interchangeable Hash
Algorithm

* Digital signatures are very slow
e Use 1,024 bits — ®:-

or higher to ensure security __:-‘__ =
e Sender signs a message with — :>

the secret private key Original Digital

document Slgnat_ure

e Receiver use the sender’s O Creation

public key to verify that the @

sender signed the message Alice

12

oristol.ac.uk

-wé University of
Y BRISTOL

Encryption Algorithms advantages & disadvantages

* Data Encryption Standard (DES)

It was one of the first widely used but not longer considered secure because it holds small key size

* Triple DES (3DES)

Effective as it applies the DES algorithm three times (168-bit key), but it consumes much more time than other

* Advanced Encryption Standard (AES)
Strong security, efficient in terms of computational resources and memory usage
Flexible as it supports many key lengths but vulnerable to side-channel attacks

* RSA (Rivest-Shamir-Adleman)
Widely used to secure key exchange, digital signatures, and public key encryption
It has built-in mechanisms for non-repudiation through digital signatures
To resist attacks large RSA keys, consumes more time for encryption

* Elliptic Curve Cryptography (ECC)
A strong security algorithm with small key sizes.

Efficient in terms of bandwidth and computational resources (loT devices)

It has Implementation complexity, and need careful implementation

13 oristol.ac.uk

-Vé University of
Y BRISTOL

How to select the key lengths

Consider the Encryption Algorithm:

length of keys in public key are large numbers comparable to symmetric algorithms

512-bit keys too weak, 2,048 bits may be too slow

* Security Requirements:
Sensitivity of the data being encrypted and potential threats

e Lifespan of the Data:
Consider for how long you need your data to remain secure (longer key lengths?)
e Regulation:
Ensure to comply with regulatory requirements with minimum key lengths (ISO 27001)

* Maintain balance:

Longer keys provide more security but may increase computational overhead and give slower
performance

https://www.sciencedirect.com/science/ 14 oristol.ac.uk
article/abs/pii/S1363412710000312

Elic University of

BRISTOL
Overview of SSL/TLS , _ ‘
. . Application layer
e SSLis a widely deployed
security protocol (HTTPS) | Presentation layer |
e Secures any protocols " Session layer
over TCP
. Transport layer
* C(Client sends a handshake ,
to the server and the __Network layer
server in the response Data link layer
sends the certificate _
Physical layer

15 oristol.ac.uk

.Vé University of
Y BRISTOL

SSL/TLS and TCP/IP

Application Application
SSL/TLS
TCP o
IP P
Application Application with SSL/TLS

e oristol.ac.uk

-Vé University of
Y BRISTOL

SSL/TLS Handshake

Browser sends a ClientHello to server

Server replies with a ServerHello to client

Server sends its certificate that includes a public
key and: owner of the certificate its expiration
date, and the fully qualified domain name

Browser validates the certificate and sends back a
challenge that the client encrypts using server's
public key

k

Server decrypts the challenge and sends the
session key

SECURED CONMECTION ESTABLISHED

17 oristol.ac.uk

Elic University of
BRISTOL

MitM attack for SSL/TLS

 The attacker needs a copy of the certificate and a private key to masquerade
as a known server

e Attacker can sniff the server messages and present the attacker’s certificate
 The forged certificate can look like legitimate
Man-in-the-middle (MitM) attack where the attacker eavesdrops on all

communication

| Request server key> O | Request server ke‘y>

==

—

—/

—/

E Gend attacker key | @ <Send server key |

- Attacker -
Client Server

18 oristol.ac.uk

Elic University of
BRISTOL

What SSL/TLS doesn’t do well?

 Using SSL is slower than an HTTP connection (handshake with
public key)

 Overhead of encrypting and decrypting the data

 Doesn't work with transport layer protocols not connection-
oriented, such as UDP

* SSL has no support for non-repudiation (what if the other party
attach a message with invalid signature?)

 SSL doesn't protect against flaws in the application itself i.e.
buffer overflow

 SSL cannot protect data before it is sent but only data in transit

19 oristol.ac.uk

.Vé University of
Y BRISTOL 23 April 2024

Usmg SSL and the OpenSSL library

OpenSSL is a cryptographic library able to implement many encryption algorithms, such
as DES, AES and RSA

* OpenSSL used to be SSLeay created by Eric A. Young and Tim J. Hudson
* beginning in 1995

* OpenSSL first version was released as 0.9.1c in 1998

 OpenSSLis a cryptographic library and an SSL toolkit

* The SSL library provides all versions of SSL alongside with TLS

* Supports the most popular algorithms for symmetric and public key and hash
algorithms

* OpenSSL a free SSL implementation and works on Unix Oss and Windows
* |t has a feature of pseudorandom number generator (increase entropy)

— : NINE NINE | Bacoey THATS THE .

OVER HERE i NINE NINE i PROBLEM int getRondomNumber()

WE HAVE OUR % NINE NINE Srfmfrs ;gw RAN

R;«\DCM | NUMBER , i| Ranpom? DOMNESS . o
T e] G S return U4, // chosen by fair dice roll.
2% / x H = et Bl 5 ¥ 4 // Quaranteed to be random.

Q\/ s G, fir*““c‘:iﬁ‘) 1 g 2 }
i\é \V WS F < | "-"k‘h-

https://hdm.io/tools/debian-openssl/ 20 briSJ[OI.aC ' Uk

-wé University of
Y BRISTOL 23 April 2024

OpenSSL Files

e KEY
A file that has the private key
* .CSR (Certificate Signing Request)

A file that is sent to the Certificate Authority with information and needs the
private key

e .CRT (Certificate abbrev)
It is the security certificate file, created to establish secure connections
 .PEM (Privacy Enhanced Mail)

May include the public certificate or an entire certificate chain (public key,
private key, certificate)

e .CRL (Certificate revocation list)
A file used to de-authorize certificates before expiration

21 oristol.ac.uk

.Vé University of
Y BRISTOL

Generating Public and Private Keys

Generate 2048 bit RSA Private Key saved as KEY1.pem Generate DSA Parameters File
openssl genrsa -—out KEYl.pem 2048 openssl dsaparam -out DSA-PARAM.pem 1024
Generate 4096 bit RSA Private Key, encrypted with AES128 Generate DSA Keys file with Parameters file
openssl genrsa -out KEY2.pem -aesl128 U096 openssl gendsa -out DSA-KEY.pem DSA-PARAM.pem
- Key size must be last argument of command Generate DSA Parameters and Keys in one File
- Omit —out <FILE>argument to output to StdOut openssl dsaparam -genkey -out DSA-PARAM-KEY.pem 2048
- Other encryption algorithms are also supported:
~aes128, -aes192, -aes256, -des3, -des See Inspecting section to view file contents.

Generating Certificate Signing Requests (CSRs) and Self-Signed Certificates
[GereatingCSRs:] Generating Self-Signed Certificates |

Generate CSR with existing Private Key file

Generate Certificate with existing Private Key file ‘

openssl req —new -key KEY.pem -out CSR.pem openssl req —x509 -key KEY.pem -out CERT.pen |

Generate CSR and new Private Key file Generate Certificate and new Private Key file

openssl req -new -newkey <alg:opt> -nodes -out CSR.pem ||openssl req —x509 -newkey <alg:opt> -nodes -out CERT.pem

Inspecting Certificate Signing Requests (CSRs) and Certificates
| ViewingcontentsofCertsandCSRs | Extracting SpecificInfo from Certificates |

Viewing x509 Certificate as human readable Text Extract specific pieces of information from x509 Certificates

openssl x509 -in CERT.pem -noout -text openssl x509 -in CERT.pem -noout -dates
openssl x509 -in CERT.pem -noout -issuer —subject

Other items -modulus —-pubkey -ocsp_uri -ocspid
you can extract: —-serial —startdate —enddate

Viewing Certificate Signing Request (CSR) contents as Text:

openssl req -in CSR.pem -noout -text

https://www.openssl.org/docs/manmaster/manl/openssl.ntml 22 bﬂSJ[QI .dC. Uk

-wé University of
Y BRISTOL

Some Known attack against SSL/ TLS (CVEs?)

 Downgrade attack

The attacker tries to make the system to use an older insecure version
protocol, cryptographic algorithm with known vulnerabilities

 CRIME attack (Compression Ratio Info-leak Made Easy)

The attacker uses a vulnerability that exploits the use of data
compression in HTTPS connections, observing the size of compressed
HTTPS responses

 BREACH attack (Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext)

The attacker uses a vulnerability to view encrypted traffic and force
the victim to send HTTP request to a vulnerable server

zlttﬁtsr.r:fllwww.openssl.org/docs/manmaster/manllopens 23 briSJ[OI.aC . Uk

-Vé University of
Y BRISTOL

Unable to conneckt

unavailable or boo busy. Try again in a Few maomenks.
- I oo are unable Lo boed amy pages, check yoor compuber's nebwork carmection.
= P your compuber o nelwork ks proetected by a Mirewall or prosy, make sure that Firehow is permsitt

24 oristol.ac.uk

-wé University of
Y BRISTOL

TCP sequence prediction attack

‘ £7300-1-nmap.pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
4 m 5@ REB Re==ER 5 EaQan
[. | Apply a display filter ... <Ctrl-/>
Mao. Time Source Destination Protocol Lengtt Info
1 @.Bepose 172.20.3.157 172.29.3.185 S7COMM 87 ROSCTR:[Userdata] Function:[Request] -»> [CPU functions] -» [Read SZL] ID=8x8@11 Index=8x8881
‘ editedPackets.pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AmJ® RE es=faEElaaan
[. |i\pply a display filter ... <Ctrl-/>
Nao. Tirme Source Destination Protocol Lengtt Info
1 @.ea8008 172.28.3.24 172.28.3.185 S7C0MM

87 ROSCTR:[Userdata] Function:[Request] -> [CPU functions] -» [Read SZL] ID=8x8811 Index=8x8881

oristol.ac.uk

Vé University of
BRISTOL

TCP sequence prediction attack

|_ 15388 221.9808@33 172.28.3.24 172.20.3.185 STCOMM 85 ROSCTR:[Job] Function:[Read Var]
15384 222.845881 172.28.3.24 i172.20.3.1685 i TCP 54 68973 - 182 [ACK] Seq=414 Ack=339 Win=63661 Len=08

8@ @e Bc a4 9c d2 @@ @c 29 77 58
@@ 28 93 e 4@ @@ B8 86 @1 93 ac
83 69 ee 2d 8@ 66 50 ed Sb45m
f8 ad 7f 22 60 o6

Frame 15384: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface \Device\NPF_ A
~ Ethernet II, Src: VMware_77:5@:37 (@0:8c:29:77:58:37), Dst: Siemens_a4:9c:d2 (@@:8e:8c:ad:9c:d2)
Destination: Siemens_a4:9c:d2 (@@:@e:8c:ad4:9c:d2)
Source: VMware_77:50:37 (@@:8c:29:77:58:37)
Type: IPv4 (BxB808)
Internet Protocol Version 4, Src: 172.20.3.24, Dst: 172.28.3.1685
¥ Transmission Contrel Protocol, Src Port: 68973, Dst Port: 182, Seq: 414, Ack: 339, Len: @
Source Port: 68973
Destination Port: 182
[Stream index: 3]
[Conversaticn completeness: Incomplete (12)]
[TCP Segment Len: @]

Sequence Number: 414 (relative sequence number)
Sequence Number (raw): 1357744965
[Next Sequence Number: 414 (relative sequence number)]

Acknowledgment Number: 339 (relative ack number)

Acknowledgment number (raw): 543807482

@18l = Header Length: 2@ bytes (5)

Flags: @x@8le (ACK)

Window: 63661

[Calculated window size: 63661]

[Window size scaling factor: -1 (unknown)]

Checksum: @x7f22 [unverified]

[Checksum Status: Unverified] v

£ >

O & This shows the raw value of the acknowledament number (tcp.ack raw). 4 bytes ” Packets: 16t

26 oristol.ac.uk

.Vé University of
BRISTOL

TCP sequence prediction attack

Mo. Time Source Destination Protocol Lengtt Info

98353 932.308047 172.20.3.24 172.20.3.105 S7C0MM 85 ROSCTR:[Job 1 Function:[Read var]

98354 932.309511 172.208.3.105 172.20.3.24 TCP 6@ 102 » 56286 [ACK] Seq=302 Ack=358 Win=2043 Len=@
98357 932.3547384 172.20.3.185 172.20.3.24 S7COMM 82 ROSCTR:[Ack_Data] Function:[Read Var]

98359 932.396988 172.20.3.24 172.20.3.185 TcP 54 56286 - 182 [ACK] Seq=358 Ack=338 Win=63911 Len=@
101515 962.309098 172.20.3.24 172.20.3.105 S7CoMM 85 ROSCTR:[Job 1 Function:[Read var]

101516 962.310411 172.26.3.185 172.20.3.24 TcP 60 182 > 56286 [ACK] Seq=338 Ack=389 Win=2043 Len=0
181517 962.335453 172.20.3.185 172.20.3.24 S7C0MM 82 ROSCTR:[Ack Data] Function:[Read Var]

101521 962.386158 172.20.3.24 172.20.3.105 TcP 54 56286 = 102 [ACK] Seq=389 Ack=358 Win=63883 Len=@
1e4649 992.309135 172.20.3.24 172.20.3.1@5 S7C0MM 85 ROSCTR: [Job] Function:[Read Var]

104658 992.318392 172.26.3.185 172.20.3.24 TcP 60 182 > 56286 [ACK] Seq=358 Ack=420 Win=2043 Len=0
184651 992.341365 172.20.3.185 172.20.3.24 S7C0MM 82 ROSCTR: [Ack Data] Function:[Read Var]

104663 992.385994 172.20. 172.20. TcP 54 56286 = 102 [ACK] Seq=220 Ack=386 Win=63855 Len=@
107848 1022.310143 172.20.3.24 172.20.3.185 STCOMM 85 ROSCTR:[Job] Function:[Read Var]

107849 1022.311358 172.28.3.185 172.20.3.24 TcP 6@ 182 » 56286 [ACK] Seq=386 Ack=451 Win=2848 Len=8
187851 1022.334887 172.20.3.185 172.20.3.24 S7C0MM 82 ROSCTR: [Ack Data] Function:[Read Var]

107853 1022.385363 172.20.3.24 172.20.3.1@5 TCP 54 56286 » 102 [ACK] Seq=451 Ack=414 Win=63827 Len=0
111653 1052.318663 172.20.3.24 172.20.3.185 STCOMM 85 ROSCTR:[Job] Function:[Read Var]

111654 1052.312787 172.28.3.185 172.20.3.24 TcP 6@ 182 » 56286 [ACK] Seq=214 Ack=482 Win=2848 Len=0
11157 1052.339937 172.20.3.185 172.20.3.24 S7CoMM 82 ROSCTR:[Ack _Data] Function:[Read var]

111659 1852.388984 172.20.3.24 172.28.3.185 TCP 54 56286 > 182 [ACK] Seq=482 Ack=442 Win=63799 Len=@
[i13298 1673.576868 _172.20.3.22 172.20.3.185 S7COMM 87 ROSCTR: [Userdata] Function:[Request] -> [CPU functions Read SZL] ID=@x8811 Index=ﬂ‘..|
113299 1873877375 172.98.3.185 172.20.3.24 ICP 6@ 182 - 56286 [ACK] Seg=#47 Ack=515 Win=2848 len=@

Pl R R O T O Y PO R i R R I P M N PR I)
W
B

Pl F) R O T T YO PR R T FPR VIR I I P Y
i
S
&

113383 1073.912483

S7C0MM ROSCTR: [Userdata] Function:[Response] -> [CPU functions] -> [Read SZL] ID=@x@@11 Index:

114388

114382

Source: Siemens_ad:dcid2 (86:6e:Bciad:dc:d2) ~ 80 Bc 29 77 50 37 80 Be Bc a4 9c d2 @B 08 45 0B [TAF
Type: IPv4 (8x@508) 80 a5 38 4c B0 90 1e 6 OS5 Se ac 14 03 69 ac 14 | 6L
Internet Protocol Version 4, Src: 172.20.3.105, Dst: 172.20.3.24 03 13 @0 66 db de dd 4a 35 3b 68 60 ce f4 50 13 foa

88 @0 do f4 @@ @@ @3 B@ @@ 7d @2 o 80 32 ©7 @p
00 00 00 D0 ©c 00 60 82 ©1 12 88 12 54 @1 04 @9 N

v Transmission Control Protocol, Sre Port: 102, Dst Port: 56286, Seq: 442, Ack: 515,
Source Port: 182

ce Po 80 00 00 ff 69 @0 5c 60 11 @0 0@ 0@ lc 00 03 00 \
Destination Port: 56286 91 36 45 53 37 20 33 31 34 2d 31 41 45 30 34 2d 6ES7 31 4-1AE@4-
[Stream index: 6] 3@ 41 42 3@ 20 00 cd BB ©2 00 B3 8@ @6 36 45 53 BABG BES
[Conversation completeness: Complete, WITH_DATA (47)] 37 28 33 31 34 2d 31 41 45 38 34 2d 38 41 42 38 7 314-1A EB4-8ABG
[TCP Segment Len: 125] 20 6@ cd B0 @2 @@ B0 B0 87 20 20 20 206 20 20 20

Sequence Number: 442 (relative sequence number) 20 26 26 20 20 26 20 20 20 20 20 20 26 00 c0 56 v
Sequence Number (raw): 3712648507 1 82 a1

[Next Sequence Number: 567 (relative sequence number)]
Acknowledgment Number: 515 (relative ack number)
Acknowledgment number (raw): 1751174900

8181 = Header Length: 28 bytes (5)

Flags: @xB18 (PSH, ACK)

window: 2048

[Calculated window size: 2048]

[Window size scaling factor: -2 (no window scaling used)]
Checksum: @xd9f4 [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @

[Timestamps]

[SEQ/ACK analysis]

TCP payload (125 bytes)

27 oristol.ac.uk

Elic University of
BRISTOL

Public Key Infrastructure (PKI)

* PKIl provides a means to establish trust binding public
keys and identities with certificates

 With PKI we are sure that data are decrypted with
corresponding private key

* |If we combine this with a hash to create a signature,
we can be sure that the encrypted data has not been
tampered

* Certificates can be signed with the issuer private key
with all info to validate the identity

28 oristol.ac.uk

Elic University of
BRISTOL

Certification Authorities

* A private CA that issues certificates locally i.e.,
for an organization trusted by its members

* Public CAs that issue certificates publicly for
members and must be trusted by the public
(third party CA certificates)

e A CA must be trusted, to extend trust and the
certificate includes the public key are freely
distributed

oristol.ac.uk

Elic University of
BRISTOL

Let’s Encrypt key principles

* A public CA that can automatically grand a browser-trusted
certificate for an HTTPS server for free

* The prerequisite is to have a valid registered domain name and
install a certificate management agent on the web server
(Certbot)

* Free and open certificate authority (CA) by the Internet Security
Research Group (ISRG)

* Provides security with TLS security best practices for admins to
secure their websites

* Offers transparency, certificates issued will be publicly available
for anyone to inspect

https://letsencrypt.org/ 30 briSJ[OJ .dC. Ul‘(

-Vé University of
Y BRISTOL

Let’'s Encrypt CA Basics

1. Let’s Encrypt identifies the server admin with the public key. The installed agent generates a new
key pair and informs Let’s Encrypt that the server controls a domain

2. Let’s Encrypt CA, will issue a set of challenges, for example:
Provide the DNS record
Provide an HTTP resource
Sign an arbitrary number (nonce) with private key

Web Server |_ s~
 Admin | Let’s KB
i SO ftware i at hitps:/example.com/ E n c rypt

Sign | 9cf0b331

https://letsencrypt.org/ 31 briSJ[OI.aC ' Uk

.Vé University of
Y BRISTOL

Let's Encrypt CA

4. The agent completes the tasks, and the CA validates the signature of the nonce and the task(s),
grands the agent the ability to request, renew and revoke certificates

. Web Server T~
Admin 5/— Let’Sn
 Software \M Encrypt
\ 03]
Put[ea9s |at (8303 |

————————————————————————————————————

https://letsencrypt.org/ 32 briSJ[OI.aC ' Uk

-Vé University of
Y BRISTOL

Let's Encrypt CA

5. The agent constructs a Certificate Signing Request with a signature (public key) and ask Let’s
Encrypt to issue a certificate for the domain with it’s public key (whole again CSR signed with
private key)

Web Server

 Admin Let’s K
. Software Encrypt

6. Let’s Encrypt CA gets the request and verifies both signatures and then issues the certificate for
the domain and sends it to the server

https://letsencrypt.org/ 33 briSJ[OI.aC ' Uk

-Vé University of
Y BRISTOL

Let's Encrypt CA

* Revocation works similarly, the agent signs a revocation request and then Let’s Encrypt CA verifies
the request and authorize, browsers then stop accepting the invalidate certificate

Revoke this certificate:

(S]

Web Server | _—"

(A

 Admin i Let’s KB
_Software Enchypt

Revoked!

(ReBl;icl"l‘gls’::tises) CRL/OCSP

https://letsencrypt.org/ 34 briSJ[OI.aC ' Uk

-wé University of
Y BRISTOL

Let's Encrypt CA

Let’s see a public example which is implemented this way: https://example.com/

ample Domain x
Example Domai +
< & [l % example.com
- - x
Certificate Viewer: www.example.org
Issued To
Common Mame (CN) www.example.org
E) Organization (J) Internet Corporation for Assigned Names and Numbers
Crganizational Unit (OU) <MNot Part Of Certificate>
This
don Issued By
M Common Name (CN) AVG Web/Mail Shield Root
ls! Organization (J) AVG Web/Mail Shield
Organizational Unit (OU) generated by AVG Antivirus for SSL/TLS scanning
Validity Period
Issued On Tuesday, January 30, 2024 at 12:00:00 AM
Expires On Saturday, March 1, 2025 at 11:58:59 PM
SHA-256
Fingerprints
Certificate 04a5419c1b6f8861c28c8c063b0c3f2e3a5fabf6158b3aT 18565 Tibaed7
27
Public Key bbbccT40bed9b0f31321104bfeTd22235027bf0d797b4 5ea408bhc3cdf2
d9s878

35 oristol.ac.uk

https://example.com/

Elic University of
BRISTOL

Introduction to PGP - Overview

PGP released in 1991 by Phil Zimmermann = de facto
standard for secure exchange of information

 Today PGP has become an open standard known as
OpenPGP

PGP can encrypt messages online: email, plain text files etc.

 C(Close to military-grade symmetric and asymmetric
encryption

 Relies on a private key (kept safe), integrity checking,
message authentication and signed certificates

PGP is slow therefore not considered for use in application

36 oristol.ac.uk

Elic University of
BRISTOL 23 April 2024

Suggested resources for further reading

Network Security with OpenSSL: Cryptography for
Secure Communications

Authors: John Viega, Matt Messier , Pravir Chandra

37 oristol.ac.uk

.wé University of
] BRISTOL

Have any questions?

oristol.ac.uk

	OpenSSL, LetsEncrypt and PGP_last
	Cryptography
	A Brief intro to cryptography
	Why cryptography is important?
	Why we need SSL/TLS?
	Types of cryptographic algorithms: symmetric key encryption
	Advantages & Disadvantages of symmetric keys
	Types of cryptographic algorithms: asymmetric key encryption (Public key encryption)
	Advantages & Disadvantages of Public keys
	Types of cryptographic algorithms: Cryptographic hash functions
	Hash functions demo
	Types of cryptographic algorithms: Message Authentication Codes (MACs)
	Types of cryptographic algorithms: Digital signatures
	Encryption Algorithms advantages & disadvantages
	How to select the key lengths
	Overview of SSL/TLS
	SSL/TLS and TCP/IP
	SSL/TLS Handshake
	MitM attack for SSL/TLS
	What SSL/TLS doesn’t do well?
	Using SSL and the OpenSSL library
	OpenSSL Files
	Slide 22
	Some Known attack against SSL/ TLS (CVEs?)
	OpenSSL basics: Demo with SSL/TLS on Apache web server
	TCP sequence prediction attack
	TCP sequence prediction attack
	TCP sequence prediction attack
	Public Key Infrastructure (PKI)
	Certification Authorities
	Let’s Encrypt key principles
	Let’s Encrypt CA Basics
	Let’s Encrypt CA
	Let’s Encrypt CA
	Let’s Encrypt CA
	Let’s Encrypt CA
	Introduction to PGP - Overview
	Suggested resources for further reading
	Have any questions?

