
Computer Systems B (Security)

University of Bristol, UK

2021

Lab#1

In this lab, we will learn about
1. the internals of a program (its memory layout)
2. howo to use OBJDUMP tool to disassemble a given binary
3. how to use GDB (GNU debugger) to debug a given program
4. Using these tools, how to understand and manipulate a given program (process)

1. Code preparation
A. Compile the following c prog (also given separately as call-convention.c).

#include <stdio.h>
int func(int a, int b, int c, int d, int e, int f)
{
 int v1, v2;
 v1=a+b+c;//risky
 v2=d+e+f;//risky
 return (v1+v2)/2;
}

int main()
{
 int x;
 printf("IN the main\n");
 x= func(1,2,3,4,5,6);
 printf("X is: %d\n",x);
 return 0;
}

 Compilation:
gcc -o call-conv64 call-convention.c

2. Objdump
As part of the compilation process, compile (GCC) converts the soruce code into the assembly
instruction and then the assembler takes in assembly instructions and encodes them into the binary
form understood by the hardware. Disassembly is the reverse process that converts binary-encoded
instructions back into human-readable assembly. objdump is a tool that operates on object files (i.e.
files containing compiled machine code).

A. Run objdump --help to see all the avaialble options.
B. Run the objdump as follows and then scroll upto the point when you see main.
$ objdump -d call-conv64
This extracts the instructions from the object file and outputs the sequence of binary-encoded
machine instructions alongside the assembly equivalent.

If the object file was compiled with debugging information, adding the -S flag to objdump will
intersperse the original C source.
Run objdump -d -S call-conv64 to see the source code together with the assembly.

Fig. 1 (The shown program is different from the call-convention)

Function prologue

arg/reg saving

index

String on stack

Argument passing

Function call

3. GDB
GDB stands for GNU Project Debugger and is a powerful debugging tool for C(along with other
languages like C++). It helps you to monitor C programs while they are executing and also allows
you to see what exactly happens when your program crashes. You can get the values of the registers
and memory (e.g. stack). It allows you to set breakpoints at a certain point in your program
execution. Though GDB is a commandline based program, you can, however, invoke its TUI (text
user interface) to have separate windows displaying the values of registers, for example.
1. Run the GDB with the following command.
$ gdb call-conv64

Fig. 2

Register pane R

Code execution
Pane C

GDB cmd
Pane G

2. This will take you to the gdb command promt (see the Fig. 2). In that command prompt, type
layout regs
focus cmd
b main
run
disassemble main

3. At this stage, all the panes will have some values. The top most pane gives you values to all the
register. The middle pane shows the assembly code being executed. And the botton pane is for the
GDB commandline. You can note the value of RIP and the address of the current highlighted line!
In the pane C, each line starts with a address, followed by the relative position marker and the
instruction.
4. The execution will halt at the entry of main function, bacause you set a breakpoint at the main
(b main). Breakpoints can be set either by using the b *address OR b *main+N.
Breakpoints are very useful when you want to analyse the values of register and memory.
Try setting a breakpoint at some later point, say b *main+60 and then run.
5. The program will halt when it reaches main+60. Now you can read the value of register, either
by looking in the Pane R or by typing GDB command: info reg
6. You can also read the memory contentby
x/8xb $rbp-0x4 (remember, rbp is the base point, which also pojnts to the stack. In this case
you will read 8 bytes starting from EBP-4. If you want to read entire stack, you can also use RSP.
Use ni and si commands to observe how GDB executes next instruction. Try and get youself
familiar with GDB (see the attached GDB cheatsheet)!

Exercise#1:
Compile the given c code (call-convention.c) with the following commands. [Note: see the
appendix A to make sure that your multi-arch compilation support is made available!]

1. gcc -m32 -o call-conv32 call-convention.c
2. gcc -o call-conv64 call-convention.c

The above two steps will create two binary files, viz. call-conv32 and call-conv64.

1. Open call-conv32 with objdump (objdump -d call-conv32)
2. Look out for the disassembly of main
3. Observe the parameter passing just before the call <func>
4. Look out for the disassembly of func
5. Observe how those parameters (arguments) are used.

Repeat the above steps for call-conv64.

