Analysis of Protocols

Sophie Stevens
October 2, 2024

1 Introduction

In this lecture we're going to look at how to begin analysing key exchange
protocols. A lot of the cryptography that you’ve already looked at is about
cryptographic primitives, for example RSA, Diffie-Hellman exchange, AES, and
their security. Protocol analysis is about making sure that we use these prim-
itives properly to set up secure communications, by which we really mean key
establishment. Once the key has been established, it is used to create a secure
communications channel. We’'ll typically look at two-party key establishment,
where two users set up a secure channel, possibly with the use of a third party.

At the end of this lecture, I'd like you to have some idea of how protocols are
designed, what security goals they might aim to achieve, and what framework we
might use to analyse protocols. In particular, we’ll be looking at authenticated
key establishment protocols, where the users not only establish a key, but they
also want to be convinced that the user with whom they’ve agreed a key is
actually the user that they expect.

2 Ongoing example

In our ongoing example we’re going to evolve a protocol design. Our goal is
for our two canonical users, Alice and Bob, to established a shared secret key
using a server that they both trust. They want this key to be known only to
them (and maybe the server) and they want this key to be fresh. Fresh in this
context means that the key was first established on that run of the protocol
— in particular, it’s not a key that’s been reused from a previous run. There
are a few minimal assumptions that we have to make: firstly, that all parties
know how the protocol should work — this means that they expect to receive
and send messages at the same time; if for example, they receive no message
when they are expecting one, they’ll assume that the adversary has blocked the
message, and will abort the process. Secondly, we’re generally not going be
that interested in the workings of the primitives themselves, and we’ll assume
they work perfectly. For example, we’ll assume that an encryption algorithm is
unbreakable unless you know the key. In reality of course this isn’t true - we
can always guess the key by brute force, and many encryption algorithms admit



better algebraic attacks (that are of course impractical in practice). Within this
assumption, we also ignore side channel attacks.

2.1 Attempt 1

Let’s begin: Alice (&) is going to tell the server (S) her own ID, and Bob’s ID
(ID_A, ID_B); the server will generate a key (K_AB) and sends it to Alice; Alice
sends the key to Bob (B) as well as her own ID, so that he knows who this key
is to be shared with.

We will summarise this exchange as follows:

Key Exchange vl:
1. A --> S: ID_A, ID_B
2. S --> A: K_AB
3. A --> B: K_AB, ID_A

Now we ask the question: is this a good protocol? Although it does achieve
the aim that Alice and Bob share a key, this key has been sent in the clear,
which means that any adversary also knows the key. Conclusion: not a good
protocol.

Implicitly, we’ve just given the adversary the power to read any message
that is transmitted. In reality, this is a reasonable assumption to make - for
example, Wireshark is a free open-source software that captures network traffic.

2.2 Attempt 2

We’ll improve our protocol now by including encryption. We need to make
some assumptions here, namely that Alice and Bob each share a key with the
server and that this key is secret from the adversary. We denote the key shared
between Alice and the server as K_AS, and the key between Bob and the server
as K_BS; implicitly we assume that these are good keys: the adversary does not
know them and they are different.

We write the encryption of a message m by key K as {m}.

Our new protocol is now:

Key Exchange v2:
1. A --> S: ID_A, ID_B
2. S --> A: {K_AB}x ps, {K_ABJ} s
3. A --> B: {K_AB}¢ s, ID_A

Again, we ask the question: is this a good protocol? Certainly it’s better
than before, because the adversary no loner knows K_AB, by dint of the key
being sent in an encrypted format and our assumption of ‘perfect cryptographic
primitives’. However, this doesn’t mean that the adversary is powerless.

One modification that the adversary can do is to impersonate Alice in Step
3 and send Bob instead: {K_AB}¢ s, ID_D. Consequently, Bob believes that his
key is to be shared with User D, rendering the key K AB useless.

However there’s a more dangerous attack that can occur:



Attack on Key Exchange v2:
1. C --> S: ID_C, ID_A
2. 8 --> C: {K_AC}x as, {K_AC}x cs

1. A --> S: ID_A, ID_B
2. C --> A: {K_AC}K_As, {K_AC}K_CS

Firstly, the adversary, C, is a legitimate user of the protocol and so can send a
key generation request to the server, who will reply as expected. Then, when
A sends an initiation request, User C impersonates the server, returning a key
that C knows, and also knows the encryption of under the key K _AS. Thus A
has a key that she believes she shares with B, but she actually shares with C;
consequently C can read any message intended for B.

This attack also violates the demand for freshness of a key — a key from one
run of the protocol (namely Steps 1 and 2) is being reused in another run of the
protocol (Steps 1’ and 2): there is nothing to bind the key to the identity or to
the protocol run.

What wider lessons can we learn here? Firstly, we let the adversary modify
messages at will; these can be partial or entire messages. We need to consider not
only the confidentiality of messages, but also the message integrity. Secondly,
the adversary can be a legitimate user of the protocol.

2.3 Attempt 3

Let’s fix the issue of the key not being bound to the identity:
Our new protocol is now:

Key Exchange v3:
1. A --> S: ID_A, ID_B
2. S --> A: {K_AB, ID_B}g s, {K_AB, ID_A} ss
3. A --> B: {K_AB, ID_A} s

Note that we are assuming integrity of the encryption algorithm - that en-
crypted data cannot be manipulated.

Again, we ask the question: is this a good protocol?

At this point it’s worth asking what the adversary can do. She can be any
participant in the protocol, and can block and send messages at will. if she
blocks a message, to avoid detection, she has to replace it with something. In
particular, she can replay messages from a previous run, or even potentially from
that same run. This is a dangerous ability if the adversary ends up replaying
from a previous protocol from which she has learnt the keys — we don’t assume
that the previous session keys are secure.

Let’s see an attack on version 3 of the protocol, where the adversary imper-
sonates the server by replaying exchanges from a broken session.

Attack on Key Exchange v3:
1. A --> C: ID_A, ID_B



2. C --> A: {K_AB’, ID_B}g ss, {K_AB’, ID_A}x ps
3. A --> B: {K_AB’, ID_A}x ss

In the attack, we assume that K_AB” is the key from the broken session that
the adversary knows.

One way that A could thwart this attack is by keeping a database of all
previous messages and making sure that she doesn’t see the same message twice.
This is however incredibly impractical, both from a time perspective (time to
search) and a storage perspective. Instead, we want to introduce some sort of
automated replay protection. Options here are time stamps, nonces or counters.
Time stamps and counters are non-random values, so easy to generate; however,
it requires both parties being in sync, which is a management burden. A nonce
is a ‘number used once’ and is generated randomly; we’ll use this as our replay
protection.

2.4 Attempt 4

Key Exchange v4 (Needham-Schroeder)

1. A --> S: ID_A, ID_B, n_A

2. S --> A: {K_AB, ID_B, n_A, {K_AB, ID_A}x ss }x.as
3. A -—> B: {K_AB, ID_A}x s, ID_A

4. B --> A: {n_B}x s

5. A --> B: {n_B - 1} s

Ok at this point, we’ve reached a named protocol - the Needham-Schroeder
protocol from 1978. The first thing to notice is that we have nonces, from both
A and B; the goal of this is to assure A that her exchange with the server is fresh,
and the goal of B’s nonce is to be assured that his exchange with A is fresh.
i.e. Because A was convinced that K_AB was fresh, by engaging in Bob’s nonce
challenge, she’ll persuade Bob that the key is fresh.

However, this protocol is still vulnerable to an attack! For example, suppose
you have an insecure session key K_AB’; then the adversary C impersonates A to
perform steps 3-5 with the vulnerable key. Importantly, B’s nonce isn’t really
persuading him of freshness - it’s being used as key confirmation here, telling
him that A shares his key. It’s a challenge-response mechanism.

2.5 Attempt 5
Key Exchange vb

1. B --> A: ID_B, n_B

2. A --> S: ID_A, ID_B, n_A, n_B

3. S --> A: {K_AB, ID_B, n_A, {K_AB, ID_A, n_B}x s }x s
4. A --> B: {K_AB, ID_A, n_Bl}x ps

This time, the structure of the protocol is different: B now initiates, although
still only A interacts with the server. Also, unlike in v4, A and B cannot be sure
that the other party shares the created key.



3 Lessons from the example

At this point we’ll depart from our long-running example, and try and extract
some general principles.

3.1 Adversary model

Firstly, we need to explicitly state what our threat model is — what is the power
of our adversary. A common threat model is the Dolev-Yao model. In this threat
model, we assume that every transmitted message is carried by the adversary.
This means that

1. We assume that the adversary does not have the power to break cryp-
tography - she can’t decrypt messages unless she has the decryption key
etc.

2. The adversary can read any message that is transmitted.
3. The adversary can modify or replay any message.

This is what we’ve been implicitly assuming throughout our model. Note
that this is a very cautious model; for example, we could loosen this assumption
by assuming that A and the server have a private channel that the adversary
cannot eavesdrop on. We could consider only passive attacks, where the ad-
versary can only listen in (as opposed to active attacks, where the adversary is
allowed to modify messages). Alternatively, we could give the adversary even
more power - we could give it certain cryptanalytic powers (e.g. saying that a
certain primitive is broken).

3.2 Security goals

We touched on some security goals today: freshness of the session key, and
confidentiality of the key.
Here are some more things that we could consider:

1. authentication (see presentations!)

2. key confirmation

3. forward secrecy (see coursework!). ..

4. ...and post-compromise security (see coursework!)
5. anonymity

6. server doesn’t know the key

7. resistance to downgrade attacks (e.g. when the protocol is negotiating the
algorithms to be used)



3.3 Symbolic vs computational security

We’ve been looking at symbolic security of a protocol today. Typically we use
online tools, such as ProVerif or Tamarin, to model the protocol and to probe
it for desired security properties. The online tool efficiently searches the space
of the allowed adversarial actions to test whether a property does or does not
hold. It’s a very binary analysis, where we think of primitives as either being
secure or insecure.

In contrast, we have the computational security model. This is more similar
to the security reductions that you saw in Cryptology.

Acknowledgements

This lecture follows the tutorial in |1, Appendix B]. This is generally an excellent
reference and only Chapter 1 is part of the Additional Reading (although the
rest of the textbook is also very interesting).

Additional Reading

[1] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for authen-
tication and key establishment. Vol. 1. Chapter 1 only for Additional
Reading. Springer, 2003.

[2] Tiano Cervesato. “The Dolev-Yao intruder is the most powerful attacker”.
In: 16th Annual Symposium on Logic in Computer Science—LICS. Vol. 1.
Citeseer. 2001, pp. 1-2.

[3] Dorothy E. Denning and Giovanni Maria Sacco. “Timestamps in key distri-
bution protocols”. In: Commun. ACM 24.8 (Aug. 1981), pp. 533-536. ISSN:
0001-0782. por: 10.1145/358722.358740. URL: https://doi.org/10.1145/
358722.358740.

[4] Gavin Lowe. “An attack on the Needham-Schroeder public-key authentica-
tion protocol”. In: Information Processing Letters 56.3 (1995), pp. 131-133.
1SSN: 0020-0190. DOT: https: //doi.org/10.1016 /0020-0190(95)00144-2. URL:
https://www.sciencedirect.com/science/article/pii/0020019095001442.


https://doi.org/10.1145/358722.358740
https://doi.org/10.1145/358722.358740
https://doi.org/10.1145/358722.358740
https://doi.org/https://doi.org/10.1016/0020-0190(95)00144-2
https://www.sciencedirect.com/science/article/pii/0020019095001442

	Introduction
	Ongoing example
	Attempt 1
	Attempt 2
	Attempt 3
	Attempt 4
	Attempt 5

	Lessons from the example
	Adversary model
	Security goals
	Symbolic vs computational security


