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1 Why do we need elliptic curve cryptography?

In 1976, Whitfield Diffie and Martin Hellman published a paper that completely re-
shaped the field of cryptography [4]. In their seminal work “New Directions in Cryp-
tography”, they described a revolutionary idea that allows for secure communication
over untrusted channels, laying the foundation for what is now known as public-key
cryptography.

The world’s first public-key encryption was RSA. Roughly speaking, the security of
RSA is based on the problem of factoring large integers. It is known that this problem
can be solved in subexponential time (see, for instance, [6]). This implies that to have
secure RSA instances, one needs to use significantly large integers, which results in
longer messages. A solution to this issue is to use the efficient arithmetic of elliptic
curves.

In this lecture, we will:

1. define elliptic curves;
2. describe their group law;
3. discuss the hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP)

providing an example of a secure and fast elliptic curve;
4. introduce the concept of pairing and briefly touch upon its role in elliptic-curve

cryptography.

2 Elliptic curves

We first introduce the notion of an elliptic curve. Bear in mind that elliptic curves
can be defined in several equivalent ways. Proving that such definitions are equivalent
is a highly non-trivial task. In this course, we will take a “cryptographic approach”,
meaning that we will simplify the definitions and concentrate on their computational
aspects.

Definition 1 (Simplified). Let K be a field of characteristic ̸= 2, 3. An elliptic
curve E is a curve defined by the equation

E : y2 = x3 + ax+ b,

where a, b ∈ K and 27b2 + 4a3 ̸= 0.
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Fig. 1. The curve E : y2 = x3 − 10x+ 1 defined over Q.

Why do we need the condition 27b2 + 4a3 ̸= 0? This is to ensure that the curve is
“smooth” and not “singular”. Let’s formalise this concept mathematically.

A natural way to look at elliptic curves is as curves into a projective space, the
space P2(K):

P2(K) := {(x, y, z) | (x, y, z) ̸= (0, 0, 0), x, y, z ∈ K}/∼ ,

where (x, y, z) ∼ (x′, y′, z′) if there exists λ ∈ K∗ such that x′ = λx, y′ = λy and
z′ = λz.

Given the elliptic curve E : y2 = x3 + ax + b, we can homogenise its equation by
considering x⇝ X/Z and y ⇝ Y/Z, i.e. we rewrite E as

E : ZY 2 = X3 + aXZ2 + bZ3.

Now, let us consider the polynomial F (X,Y, Z) = ZY 2−X3−aXZ2−bZ3. The elliptic
curve E is non-singular if Equation 1 has no solutions in P2(K).

∂F
∂X (X,Y, Z) = 0
∂F
∂Y (X,Y, Z) = 0
∂F
∂Z (X,Y, Z) = 0

F (X,Y, Z) = 0

(1)

This boils down to imposing 27b2 + 4a3 ̸= 0.
Given an elliptic curve E : y2 = x3+ax+ b, we can rewrite E in an equivalent form

by performing this change of variables:

x⇝ u2x′ + r, y ⇝ u3y′ + su2x′ + t,

where r, s, t ∈ K and u ∈ K∗.

Remark 2. After performing such a change of variable, we might end up with an elliptic
curve of a form different from the one introduced in Definition 1. Elliptic curves in
different forms may have some advantages compared to others with respect to certain
applications.

Curves written in equivalent forms under this transformation can be identified by
the notion of j-invariant. Given an elliptic curve E : y2 = x3 + ax + b, its j-invariant
can be computed as

j(E) = 1728
4a3

4a3 + 27b2
.
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3 Group Law

The main reason elliptic curves are widely adopted in cryptography is because they
enjoy a nice group structure. Let us briefly recall the notion of group.

Definition 3. Let G be a non-empty set and let ∗ : G×G → G be a binary operation.
The datum (G, ∗) is a group if:

1. for all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c;
2. there exists an element e (called the neutral element) such that for all a ∈ G,

e ∗ a = a ∗ e;
3. for each a ∈ G, there exists an element b ∈ G such that a ∗ b = b ∗ a = e.

Moreover, we will say that (G, ∗) is abelian if for all a, b ∈ G a ∗ b = b ∗ a.
For the rest of this section, let E : y2 = x3+ax+b be an elliptic curve. We will now

show (without proving it) that elliptic curves are abelian groups via the line-tangent
rule (cfr. Figures 2 and 3).

Let P = (xP , yP ), Q = (xQ, yQ) ∈ E be two distinct points such that yP ̸= ±yQ.
We can “sum” P and Q as follows. We first draw the line a connecting P and Q. Such
a line will intersect E at another point; define this point to be S = (xS , yS). The point
P ⊕Q = (xS ,−yS). Mathematically, we have thatxP⊕Q =

(
yQ−yP

xQ−xP

)2

− xP − xQ

yP⊕Q =
(

yQ−yP

xQ−xP

)
(xP − xP⊕Q)− yP

. (2)

What happens when yP = −yQ? In this case, we necessarily have that xP = xQ.
The point P is then equal to the inverse of Q. But, what’s the neutral point for E? We
need a distinguished point ∞. In other words (xP , yP ) ⊕ (xP ,−yP ) = ∞. Moreover,
for all S ∈ E, S ⊕∞ = S.

Fig. 2. Point addition. Here, we have R = P ⊕Q.

Remark 4. When considering the projective form of E, i.e. E : ZY 2 = X3 + aXZ2 +
bZ3, points on E are represented by projective triples (X,Y, Z). In particular, the
identity element is represented by (0, 1, 0).

What’s the advantage of considering projective points? We can avoid inversions
when summing two points. Inversions are usually very expensive operations to perform.
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It remains now to deal with the case P ⊕ P , where yP ̸= 0.1 In this case, rather
than having a line passing through two points, we consider the tangent line at P and
repeat the same reasoning as above. Mathematically, we havexP⊕P =

(
3x2

P+a
2yP

)2

− 2xP

yP⊕P =
(

3x2
P+a
2yP

)
(xP − xP⊕P )− yP

. (3)

Fig. 3. Point doubling. Here, we have R = P ⊕ P .

Remark 5. By looking at Figure 2, we could convince ourselves that P ⊕Q = Q⊕ P .
Proving that, for all P,Q,R ∈ E, we have P ⊕ (Q⊕R) = (P ⊕Q)⊕R is a non-trivial
task.

For each n ∈ Z we define [n]P to be
P ⊕ . . .⊕ P︸ ︷︷ ︸

n−times

if n > 0,

the inverse of [−n]P if n < 0,

∞ if n = 0.

4 Elliptic curves defined over finite fields

We now specialise to the case where elliptic curves are defined over a finite field Fq,
where q = pn for some prime p > 3. Let E be an elliptic curve defined over Fq. We
define

E(Fq) = {(x, y) ∈ E | x, y ∈ Fq} ∪ {∞}.
The set E(Fq) enjoy a nice structure of abelian group. It is possible to prove that

E(Fq) ≃ Z/n1Z× Z/n2Z,

where n1 divides n2 and q − 1 [5, §3.12]. Moreover, we have an upper bound on the
cardinality of E(Fq):

#E(Fq) = q + 1− t,

1 What happens when yP = 0?



Elliptic-curve Cryptography 5

where | t |≤ 2
√
q. The quantity t is called the trace of Frobenius at q [5, Thm. 3.61

(Hasse’s Theorem)]. Moreover, if gcd(m, q) = 1, we have that

E(Fq)[m] :=
{
P ∈ E(Fq) | [m]P = ∞

}
≃ Z/mZ× Z/mZ.

Given an elliptic curve E, the group order #E(Fq) can be computed efficiently.
However, algorithms to do so are complicated to explain and out of scope.

5 The Elliptic Curve Discrete Logarithm Problem

Given a point P ∈ E we say that P has order n if n is the smallest positive integer
such that [n]P = ∞.

So far, we have seen that given a point P ∈ E, computing [m]P can be done
efficiently. However, what can we say about the converse?

Definition 6 (ECDLP). Let E be an elliptic curve defined over Fq and let P ∈
E(Fq). Suppose we are given a point Q which is equal to [m]P for some m ∈ Z. The
Elliptic Curve Discrete Logarithm Problem (ECDLP) asks to find any m′ ∈ Z such
that [m′]P = Q.

It is clear that the difficulty of solving this problem depends on the order of P . To
be more precise, the complexity of this problem is defined by the largest prime factor
dividing the order of P (cfr. Pohlig-Hellman). Therefore, the hardest instance for the
ECDLP is when P has order ℓ, where ℓ is a large prime. But how large?

It turns out that the best known algorithm to attack the ECDLP takes ≈
√
ℓ field

operations. This can be achieved using the Pollard’s ρ-method.
The order of the point P must divide #E(Fq). As a result, a “nice” curve for

cryptographic application should have #E(Fq) ≈ ℓ. As we have seen in Section 4, we
have that #E(Fq) ≈ q. From which it follows, that a “nice” curve should have q ≈ ℓ.

Now, let’s try to do some rough estimates on the size of these good elliptic curves. If
we want to have an instance of the ECDLP which resist to an attack of complexity 2128,
we should expect to work on a base field Fq represented by 256 bits.

Example 7. One of the “fastest” curves to work with in elliptic-curve cryptography
is Curve25519, which was designed by Bernstein [1]. Such a curve is defined by the
equation

E : y2 = x3 + 486662x2 + x,

defined over the field Fp, where p = 2255 − 19. The points whose x-coordinates equal 9
have order

2252 + 27742317777372353535851937790883648493.

When instantiating concrete cryptosystems, it is usually hard to design security
proofs uniquely relying on the ECDLP. This is the case for the Elliptic Curve Diffie-
Hellman (ECDH). For ECDH, to prove that the key exchange is secure in the presence
of an eavesdropper, we need to rely on a variant of the ECDLP.
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Definition 8. Let E be an elliptic curve defined over Fq and let P ∈ E(Fq). Suppose
we are given a point [m1]P and [m2]P , for some m1,m2 ∈ Z. The Computational
Diffie-Hellman (CDH) problem asks to compute [m1m2]P .

Clearly, if we could break the ECDLP, we could indeed break the CDH problem.
What about the converse? In general, we don’t know. It is believed that the best attack
strategy is to indeed break the ECDLP in the first place.

6 The Weil Pairing

Elliptic curves come equipped with another useful structure, the Weil pairing. It was
initially used as a cryptanalytic tool but later has also been employed to design more
advanced cryptosystems; see, for instance the BLS signature [2].

Let E be an elliptic curve defined over Fq and let m be a positive integer prime
to q. Let µm denote the group of the m-th roots of unity, i.e. for all σ ∈ µm, we have
that σm = 1.

The Weil em-pairing is a map em : E[m] × E[m] → µm that satisfies the following
properties.

1. Bilinear. em(S1 ⊕ S2, T ) = em(S1, T ) · em(S2, T ), and em(S, T1 ⊕ T2) = em(S, T1) ·
em(S, T2).

2. Alternating. em(S, T ) = em(T, S)−1.
3. Non-degenerate. If em(S, T ) = 1, for all S ∈ E[m], then T = ∞.

7 Additional Readings

[7] “The Arithmetic of Elliptic Curves”, Silverman (especially Chapters III and V).
[5] “Elliptic curves and their applications to cryptography: an introduction”, Enge.
[3] “Handbook of Elliptic and Hyperelliptic Curve Cryptography”, Cohen, Frey, Avanzi,

Doche, Lange, Nguyen and Vercauteren.
– CRYPTOHACK, https://cryptohack.org/.
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