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1 Introduction

As you may have heard in previous lectures, there is another branch of cryptography
which is dealing with the problem of designing cryptosystems that are secure against
quantum computers; this branch is called post-quantum cryptography. The examples of
cryptosystems we have shown in previous lectures are all vulnerable to the quantum
threat due to the fact their hardness assumptions are stated in terms of commutative
groups. We therefore need to look into a different direction.

We have already seen that elliptic curves are particularly amenable to cryptography
thanks to their fast arithmetic. More importantly, elliptic curves have been widely
studied in cryptography. So, if we want to have quantum-resistant cryptosystems that
are also efficient, continuing to use elliptic curves is a promising approach.

Since the group structure of elliptic curve is commutative, we have to rely on a
different mathematical object involving elliptic curves. The solution is to look at maps
between elliptic curves. In the next sections, we explain how to use some special maps,
called isogenies, to design cryptosystems. These cryptosystems will actually mimic the
constructions we have previously shown.

2 Isogenies

The word “isogeny” itself hints at the property we are after. In a certain sense, isogenies
preserve the same “type”, the same “genus”. Let’s formally define them.

Definition 1 (Simplified). Let E and E′ be two elliptic curves defined over a field K.
An isogeny φ : E → E′ is a homomorphism of groups between E and E′. Isogenies are
defined by rational maps, i.e. the ratio of two polynomials. The field of definition of an
isogeny coincides with the field of definition of the rational maps.

The degree of an isogeny is equal to its degree as a rational map. Concretely (up
to edge cases), isogenies are uniquely determined by their kernels, and the size of their
kernels equals the degree of the isogeny.

Given an isogeny φ : E → E′ there exists another isogeny φ̂ : E′ → E of the same
degree as φ. Such an isogeny is called the dual isogeny of φ.

Example 2. Let E : y2 = x3 + x be an elliptic curve defined over F192 and let i ∈ F192

be a root of x2+1 ∈ F192 [x], i.e. i =
√
−1. The isogeny φ : E → E′, with kernel ⟨(i, 0)⟩

is given by:
φ : E → E′ : y2 = x3 + 11x+ 14i

(x, y) 7→
(

x2−ix−2
x−i , x2y−2ixy+y

x2−2ix−1

)
.
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Questions: What’s the degree of this isogeny? What’s special about the denominators
of these rational maps?

2.1 Vélu’s formulae

To compute isogenies, we can rely on the Vélu’s formulae, which were introduced by
Vélu in [4]. We briefly recall them below.

Let E : y2 = x3 + ax+ b be an elliptic curve and suppose we want to compute the
isogeny φ : E → E′ : y2 = x3 + a′x + b′ with kernel ⟨P ⟩, where P is a point of odd
order ℓ. The quantities a′ and b′ are defined as follows:

a′ = a− 10 ·

ℓ−1
2∑

k=1

(3x2
[k]P + a), and b′ = b− 14 ·

ℓ−1
2∑

k=1

(2y2[k]P + x[k]P (3x
2
[k]P + a)).

Each point in ⟨P ⟩ is sent to the identity on E′. Let Q = (x, y) ∈ E ∖ ⟨P ⟩, then
φ(Q) = (x′, y′), where

x′ =x+

ℓ−1
2∑

k=1

(
2 ·

(3x3
[k]P + a)

x− x[k]P
+

(
2y[k]P

x− x[k]P

)2
)
,

y′ =y − 2 ·

ℓ−1
2∑

k=1

(
4y2[k]P

y

(x− x[k]P )3
+ (3x3

[k]P + a)
y

(x− x[k]P )2

)
.

These formulae are not the most efficient ones when it comes down to concrete
computations. The best asymptotic algorithm to compute isogenies is the so-called
square-root Vélu [1].

2.2 Endomorphism Rings

An endomorphism is an isogeny φ : E → E, where the domain and codomain coincide.
We denote the set of all endomorphisms by End(E).

Example 3. Let m ∈ Z. The map [m] : E → E acting as the scalar multiplication [m]P
is an endomorphism. Its degree is equal to m2.1

The set End(E) is endowed with a ring structure. To be more precise:

– the endomorphism [0] : E → E is the zero of the ring;
– given α, β ∈ End(E), the endomorphism α · β is the endomorphism P 7→ α(β(P ));
– given α, β ∈ End(E), the endomorphism α + β is the endomorphism P 7→ α(P )⊕

β(P ).

1 This is not entirely true, but it is enough for the applications we have in mind. To be more
precise, this property holds when gcd(m, char(K)) = 1, where K is the field of definition
for the elliptic curve E.
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From now on, let us assume we are working over a finite field Fq. If the endomor-
phism ring End(E) is commutative, the curve E is said to be ordinary, otherwise is
said to be supersingular.

Supersingular elliptic curves are the types of elliptic curves encountered in almost
all isogeny-based cryptosystems, since they enjoy some extra properties.

Given E an elliptic curve defined over Fp, we have a very special endomorphism,
called the Frobenius endomorphism.

π : E → E
(x, y) 7→ (xp, yp).

3 CSIDH

We know sketch the main idea behind one of the most famous isogeny-based protocols:
Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) [2].2 It provides a drop-in
replacement for the classical non-quantum-resistant cryptosystems via a transitive and
free group action.

Definition 4. Let G be a group whose neutral element is e and let S be a non-empty
set. A group action ⋆ : G× S → S is a binary operation such that:

– for all s ∈ S, e ⋆ s = s;
– for all s ∈ S and for all g1, g2 ∈ G, g1 ⋆ (g2 ⋆ s) = (g1 · g2) ⋆ s.

We say that the action ⋆ is free if g ⋆ s = s, for some s ∈ S, implies that g = e.
Additionally, we say that the action ⋆ is transitive if for all s1, s2 ∈ S there exists
g ∈ G such that g ⋆ s1 = s2.

We now describe the transitive and free group action in CSIDH. First, what is the
set S? We will now work with supersingular curves E defined over Fp, where p is a
prime of the form 4 ·ℓ1 · . . . ℓn−1 for some small distinct primes ℓi. We define EndFp

(E)
to be the set of all the endomorphisms defined over Fp. The set we will use for the
CSIDH action is Sp, which is the set of all the the elliptic curves defined over Fp such
that EndFp

(E) ≃ Z[
√
−p].

Which group can we use in CSIDH to have a free, transitive group action? The
group used in CSIDH is the ideal class group I(Z[

√
−p]), which we are not going to

describe in this short note. Rather, we will describe some of its elements.
For each i = 1, . . . , n, we have that the elements (ℓi,

√
−p± 1) ∈ I(Z[

√
−p]). These

elements are technically equivalence classes of fractional ideals, but for the case at hand
we will consider them as a tuple. How do they act on Sp?

Let E ∈ Sp. We denote by P−
i = (x, y) a point of order ℓi on E such that x, y ∈ Fp,

and we denote by P+
i = (x, y) a point of order ℓi on E such that x ∈ Fp but y ̸∈ Fp.

The action of (ℓi,
√
−p+ 1) on E is the curve E+, where φ+ : E → E+ is the isogeny

with kernel ⟨P+
i ⟩. Mutatis mutandis, for the action of (ℓi,

√
−p − 1). One can prove

that for all E ∈ Sp, we have

((ℓi,
√
−p+ 1) · (ℓi,

√
−p− 1)) ⋆ E = E.

2 CSIDH is pronounced “sea side”. I strongly recommend reading this paper.
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This means that (ℓi,
√
−p+ 1)−1 = (ℓi,

√
−p− 1).

We now know how to compute the action of some of the elements in I(Z[
√
−p])

onto Sp. However, one can argue that knowing how to compute the action of the
(ℓi,

√
−p ± 1)’s is actually close enough to knowing how to compute the action of all

the elements in I(Z[
√
−p]).

We fix a positive integers m and then restrict to computing the actions of elements
of the form

(ℓ1,
√
−p+ 1)e1 · . . . · (ℓn,

√
−p+ 1)en ,

where e1, . . . , en ∈ [−m;m]. In other words, we have an action of [−m;m]n onto Sp.
We now explain how to create a Diffie-Hellman key exchange using the CSIDH

group action. We first fix a curve in Sp, say E0. In a key-exchange setting, we have two
parties, Alice and Bob. Alice’s secret key consists in a tuple of integers (a1, . . . , an),
whereas her public key is given by

EA = (ℓ1,
√
−p+ 1)a1 · . . . · (ℓn,

√
−p+ 1)an ⋆ E0.

Similarly, Bob has a secret key (b1, . . . , bn), and its associated public key

EB = (ℓ1,
√
−p+ 1)b1 · . . . · (ℓn,

√
−p+ 1)bn ⋆ E0.

Given Bob’s public key EB , Alice computes the shared secret key

E = (ℓ1,
√
−p+ 1)a1 · . . . · (ℓn,

√
−p+ 1)an ⋆ EB ,

and similarly does Bob. Both parties end up with the same shared key because ⋆ is a
transitive and free action group action of a commutative group.

Remark 5. The CSIDH framework is very “malleable” and offers a useful tool to con-
struct more advanced cryptographic primitives such as digital signature schemes, ring
signatures, and so on.

4 On the Security of Isogeny-based Cryptography

The most general problem underlying isogeny-based cryptography is the Pure isogeny
problem.

Definition 6. Let E and E′ be two elliptic curves defined over Fq. Compute, if it
exists, an isogeny connecting E and E′.

The hardness of this problem depends on many factors. In the case of supersingular
elliptic curves defined over Fp2 , where the prime p is large enough, the problem is
believed to be hard.

Unfortunately, when designing a cryptosystem, it is hard to rely on this very general
problem. Cryptographers tend to rely on other problem which may be easier to solve
compared to the pure isogeny problem.

For instance, a problem which has been used for quite some time in isogeny-based
cryptography is the Supersingular Isogeny with torsion problem, which we briefly recall
below.
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Definition 7. Let ℓA, ℓB be two small distinct primes and let p be a prime of the form
f · ℓeAA ℓeBB − 1 for some f, eA, eB > 0. Also, let E and E′ be two supersingular elliptic
curves defined over Fp2 connected by an unknown isogeny φ : E → E′ of degree ℓeAA and
let P,Q be two points that generate EA[ℓ

eB
B ]. Given (φ(P ), φ(Q)), recover the isogeny φ.

This problem has resisted several attempts of cryptanalysis but was eventually
completely broken in 2022. The technique used to achieve this is quite advanced, and
for this reason, we will focus on an easier way to attack a harder variant of this problem.

Definition 8. Let ℓ be a small prime and let p be a prime of the form f · ℓe − 1 for
some f, e > 0. Also, let E and E′ be two supersingular elliptic curves defined over Fp2

connected by an unknown isogeny of degree ℓe. Recover any isogeny φ : E → E′ of
degree ℓe.

A standard way to attack this sort of problems in cryptography is the meet-in-the-
middle attack. Suppose that ℓ = 2 and e is even. Given any elliptic curve Ẽ, there exists
three distinct isogenies of degree two, say φ1 : Ẽ → Ẽ1, φ2 : Ẽ → Ẽ2 and φ3 : Ẽ → Ẽ3.
Then starting from one of the image curves Ẽi, we will have other three isogenies of
degree two. However, one of these isogenies will be the dual of the isogeny φi : Ẽ → Ẽi.
As a result, we only two distinct isogenies that do not take us back. Pictorially, we
have the following situation.

Ẽ

Ẽ1

Ẽ2

Ẽ3

φ1

φ2

φ3

Given the two curves E and E′, we know that there exist at least one isogeny of
degree 2e. To recover such an isogeny, we could try to compute all the isogenies of
degree 2e/2 originating from E and E′ and then look for a match between the nodes;
see Figure 1.

This approach, known as the meet-in-the-middle attack, requires computing roughly
≈ 2e/2 operations. It also needs to store ≈ 2e/2 nodes, which for large enough e can
soon become a problem. There exist variants of this attack where one can lower storage
requirements at the cost of a higher computational cost.
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Fig. 1. Meet-in-the-middle attack.

5 Additional Readings

– Isogeny-based cryptography school, https://isogenyschool2020.co.uk/schedule/.
– “Mathematics of Isogeny Based Cryptography”, De Feo [3].
– CRYPTOHACK, https://cryptohack.org/.
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