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1 What is a lattice

A lattice in two dimensions includes probably exactly what you imagine: a
Cartesian product of points, in a grid structure. In n-dimensions, a lattice is a
set of points in n-dimensional space with a periodic structure. Mathematically
a lattice is a n-dimensional vector space over Z, so it is defined by a basis
b1,...,b, € R™; the lattice is given by

L(by,... by) = {> ab;: a; € L}.
i=1

A somewhat boring example of a lattice is Z".

2 One-way functions from lattices

For lattices to be a candidate for cryptography, we must be able to associate
them to a one-way function. This is a function that is easy to calculate, but
computing the input of a given output is hard. Ajtaﬂ introduced a lattice-
based one-way function assuming the hardness of the Shortest Vector Problem,
specfically the n®-approximate Shortest Vector Problem.

The Shortest Vector Problem (SVP) is to find the shortest vector for a given
lattice. In the a-approximate SVP, it is enough to find a vector whose length is
at most a factor of a greater than the length of the shortest vector.

Ajtai’s one-way function is over Z; it’s actually a hash function:

fA{O,...,d—l}m%ZZ
y— Ay (mod q)

where A is a matrix chosen uniformly randomly from Zg*™. For example, we
choose d = 2, ¢ = n? and m > nlog(n?).

M. Ajtai. Generating Hard Instances of Lattice Problems (1996). https://dl.acm.org/
doi/pdf/10.1145/237814.237838
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A collision (which would violate the hash function assumption) means that
Ay = Ay’, and so y — ¢’ is a short non-zero vector of the lattice defined by
Ay (A):={yeZ™: Ay =0 mod q}.

Exercise: show that AJ-(A) is a lattice.

Notice that the function f4 is simple to implement (because it’s just matrix
multiplication and modular arithmetic), but the ‘key size’ (the size of A) grows
at least quardratically. We could make this construction more efficient by giving
A a special structure.

3 LWE

3.1 Learning from parity with errors

For n > 1 and ¢ > 0 the learning from parity with error problem is to find
s € Z% given a list of ‘equations with errors’:

< s a1 > = by (mod 2)
< s,a2 > R by (mod 2)

where a; € Z3 is chosen uniformly and independently and ~, means that each
equation is correct independently with probability 1 — e.

Q. How hard is this problem when ¢ = 07 What value of ¢ makes this
problem the hardest?

Q. Imagine that we want to just recover the first bit of s: we could pick
a random set of n equations. What probability do we have that our guess for
the first bit of s is correct? From this probability, how many times do we need
to iterate to be confident of the first bit of s? How many times do we need to
iterate to get all of s with a high confidence?

3.2 Learning with errors

We can extend the Learning from Parity with error problem in many ways:
firstly, why limit ourselves to working mod 27 Instead, let’s work mod p. Sec-
ondly, instead of our errors being chosen uniformly, let’s choose errors from a
probability distribution y.

This gives us the learning with error problem: for n > 1 and p = p(n) <
poly(n) prime, find s € Z; given

<s,a1 >=b;+e; (mod p)
< s,a3 > =by+es (mod p)

where a; € Z;, are chosen uniformly and independently and e; € Z), is chosen
independently according to x. We refer to this as LWE,,



Q. As a quick exercise to become more familiar with the notation, how
would we write the Learning from Parity with Noise problem using the notation
LWE, ,?

The Decision LWE Problem is as follows: given m independent samples
(a;,b;) € Zg X Zyp, where either all the samples are of the form b; = a;s + ¢;
(where s is the LWE secret, and e; the error distributed according to x), or all
the samples are of the from b; = u; for some uniformly sampled u; € Z,, decide
(with non-negligible advantage) which case we are in.

The Search-LWE problem is as follows: given m independent samples (a;, b;) €
ZZ X Zp, where b; = a;s + e; (where s is the LWE secret, and e; the error dis-
tributed according to x), recover s.

e Note that without the error term, both the search and decision problems
are easy.

e We can also work with a single matrix equation (A, As + ¢) instead of
considering m samples

e LWE is somewhat similar to code-based cryptography: this time, instead
of recovering a codeword, we’re recovering a lattice point.

e The decision and search LWE problems are equivalent (up to a polynomial
difference in the size of m between the two problems)

e Although I've been writing p a prime, actually it can be a prime power
(where typically the notation is ¢ = p"); typically ¢ is a power of 2.

3.3 Ring and Module Learning with errors

We can extend this to Ring or Module LWE by working over a ring or a module
instead.

A ring is a group under addition that has a ‘multiplication’ operation. How-
ever, unlike a field, there is not necessarily inverses for non-zero elements. For
example Z[z], the polynomial ring over the integers, is a ring.

A module is a generalisation of a vector space. However, the field of scalars
(often C) is replaced by a ring. For example, Consider the module M with basis
elements given by e; = (,0),e2 = (0, 2+ 1) and scalar multiplication over Z[z].
Then any element of M looks like aje1 + ages where aq, ag = Z[z].

3.4 SVP

The shortest vector problem is essentially the core hard problem underlying
LWE. There’s actually a couple of different reductions that reduce the hardness
of LWE to very similar problems.

The shortest vector problem (SVP) is to find the shortest vector in the
lattice.

This is related to the approximate-SVP problem: find a short vector that is
at most a (given) factor larger than the shortest vector.



Similarly, we have the shortest independent vectors problem (SIVP): find
a collection of independent vectors that form a basis of the lattice that are as
short as possible (in the sense that if you line up the vectors from smallest to
largest, the largest vector has a minimal size over all possible sets of independent
vectors). This is related to the approximate-SIVP problem, in which you're
allowed to be a given factor away from the shortest possible independent set.

The hardness of lattice based cryptogrpahy is based on these types of prob-
lems.

4 Cryptosystem

There are a number of different ways that we can encrypt using LWE. They’re all
somewhat similar, and the differences are usually to take advantages of various
efficiencies.

4.1 Encrypting and decrypting

In this subsection, we’ll describe a system that encrypts a message. The goal is
for decryption to recover that same message.

Our cryptosystem is parameterised by integers n (the security parameter),
m (number of equations), ¢ (modulus), and x (noise distribution).

e The private key is s € Zy, chosen uniformly

e The public key is (A,t = As +e) € Z7"*" x Z;*, where e € Z™ is the
error vector chosen so that each element is independently chosen randomly
according to the probability distribution y.

e We will encrypt a message in {0,1}*. For each bit of the message, chose
a random set S uniformly among all 2™ subsets of [m]. The encryption is
(Xics@ir 2jeg ti) if the message bit is 0, and (3, cqai, [2] + > ,cqti) if
the message bit is 1. Here, a; is the ith row of the matrix A, and ¢; is the
ith element of the vector t.

e To decrypt a pair (a,b), output 0 if b — (a,s) is closer to 0 than to ||

2
(modulo ¢) and 1 otherwise.

Note that this system is quite inefficient.
Question: how big is the public key? By how much does the ciphertext
increase for each message bit that we send?

Correctness A major question that we need to ask, is whether this cryp-
tosystem work, in the sense that decryption recovers the message.

Exercise: show that decryption works if there is no error.

For S associated to a given message bit, decryption works as long as ) ;g e; <
q/4. Therefore, the probability of a decryption failure is the probability that
this inequality is not satisfied. The probability of a decryption failure therefore



depends on the error distribution; typically we will choose errors following a
discrete Gaussian distribution and we use standard probability bounds (or even
just direct calculation, depending on the size of ¢) to bound this probability.
We want the failure probability to be small.

Security The other major question with which we must concern ourselves is
whether this cryptosystem is secure, in the sense that the public data (public
key and ciphertext) does not reveal anything about the message. In reality, we
will be satisfied if only a negligible amount of information about the message is
revealed.

We will sketch the security proof against chosen plaintext attacks.

Suppose that there exists an efficient algorithm that, given a public key
(A,t) as above, can correctly guess the encrypted bit with probability at least
% + m. Now, let us input into the algorithm (A,u), where u € Z7" is
chosen uniformly, and a random bit encrypted using (A, u). Then, it follows E|
that with very high probability that the distribution (>, g as, > ,cgti) is close
to uniform. Consequently, encryptions of 0 and 1 are pretty much identically
distributed and so the algorithm cannot distinguish the encrypted bit beyond
random guessing. So either the algorithm can correctly guess the value of an
encrypted bit (if it’s given a ‘proper’ sample) or it cannot (if it’s given a random
sample); this means it can distinguish LWE samples from uniform samples. This
violates the decision LWE problem.

4.2 Key Encapsulation - FrodoKEM

Encapsulation is very related to encryption: we want two (or more) parties to
agree a random secret. For example, Alice could send to Bob an encrypted
secret that she has chosen. However, when encapsulating in general, Alice does
not necessarily have control over the randomness generated. As typical encryp-
tion involves first using public key cryptography to exchange a key, and then
symmetric cryptography.

The Key Encapsulation Mechanism (KEM) that we describe is basically
FrodoKEM. It is defined over Z,, where ¢ = 2N is a power of 2.

We'll first introduce some notation: let r — x™*™ to denote that every
element of r € Zg*™ is sampled uniformly at random from Z, according to the
probability distribution .

Let B< N —1 and B = N — B. We define the rounding function as

|1o5 s v [27P0]  (mod 2)7,

where v € Z, is represented as an integer in [0,¢). The rounding function
outputs the B most significant bits of v + 2571 essentially partioning Z, into
2B intervals.

2This claim needs proof. For example, you could use the Leftover Hash Lemma.



We will define the cross-rounding function from Z, — Z, as follows:

(Yop tv = [278F] mod 2

where B = (log, q¢) — B. The cross rounding function partitions Z, according
to the (B + 1)th most significant bit.

e Alice generates A € Zy™" uniformly at random. She samples S, & — XX

and sends (A, AS 4 E) € Zp*" x Zp*™.

e Bobsamples S’, B’ — x™*™ and E"" — x™*". He calculates B’ = S’A+FE’
and V =5B+ E".

Bob sends (B', (V)5 € Z77™) x Z5*".

e Alice calculates B'S; for each element z;; in this matrix, she outputs
|v]2e, where v is the closest element to x;; so that (v)os = Cj;. She calls
this output matrix K 4.

e Bob calculates |V]y5, calling this matrix Kp.

Correctness With high probability, K4 = K. Hence Alice and Bob agree
on a secret. This of course depends on the choice of the error distribution. The
error distribution is an approximation to the rounded Gaussian.
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