
Postquantum Cryptography

Sophie Stevens

October 2024

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail
And they’ll read our email,
Till we get crypto that quantum, and daunt ’em.
- Jennifer and Peter Shor

1 Introduction
The advent of quantum computing represents huge strides for humanity, but
challenges for cryptography. Quantum computing is fundamentally different
from classical computing: in a classical computer, operations are performed on
bits that are deterministically 0 or 1; a quantum computer performs operations
on qubits. We can think of a qubit as a probabilistic combination of 0 and
1, whose binary value is only fixed upon measurement. This means that we
can perform operations on a superposition of 0 and 1 before we measure the
outcome. A consequence of this is that we can compute a function on several
different inputs simulatenously (although we will only see one of the possible
corresponding outputs upon measuring). This means that there are some func-
tions that we think are hard to compute on a classical computer that we know
are easy to compute on a quantum computer. This sentence needs some caveats:
firstly, by ‘we think are hard’, we mean that it’s a problem that we have stud-
ied for decades and don’t know how to solve on a classical computer efficiently
(i.e. in polynomial time); secondly ‘easy to compute on a quantum computer’
assumes that our real quantum computer functions as its ideal abstraction – in
reality, we must take into account the effect of noise and errors.

2 Shor’s algorithm and Grover’s algorithm
There are two quantum algorithms that are most relevant for cryptography
today: Shor’s algorithm and Grover’s algorithm.

Grover’s algorithm is a very generic search algorithm. It makes a brute-force
attack quicker, because you search inputs until you find one that matches the
output you’re looking for.. It is optimal in the sense that no search algorithm on

1

unstructured data will perform asymptotically quicker. A classical unstructured
search takes O(N) evaluations, whereas Grover’s takes O(

√
N) evaluations we

have a quadratic speedup.
Shor’s algorithm attacks the algebraic structure of some schemes by using

quantum mechanics (specifically the power of the Quantum Fourier Transform)
for order finding: given gx (mod y) recover x. This is directly applicable to
Diffie-Hellman (and it’s in an arbitrary group, so automatically extends to El-
liptic Curve Diffie-Hellman); using a number theory trick (difference of two
squares), it’s also applicable to RSA. Classically factoring is assumed to be
subexponential, whereas Shor’s algorithm is polynomial (i.e. to factor an inte-
ger N takes times O(poly(logN)).

2.1 Impact on symmetric cryptography
As symmetric cryptography does not have much algebraic structure (or at least
if it does, we haven’t yet discovered it), Shor’s algorithm does not affect it.
Grover’s algorithm however does – searching the key space is now significantly
quicker. To fix this, we need longer keys. As an overly cautious solution,
we could double the key size (to account for the square root loss of security).
However, the actual details behind algorithms such as AES means that this
gives us more security than the classical counterpart.

2.2 Impact on asymmetric cryptography
Grover’s algorithm also applies to asymmetric cryptography because of its gener-
icity. However, a brute-force attack is rarely the state-of-the-art attack of a pub-
lic key system. Thus, although we must of course consider the effect of Grover,
in reality there’s a far greater issue at hand: Shor’s algorithm.

Shor’s algorithm completely destroys the security of Diffie-Hellman. That’s
because given a public key gx (mod p), Shor’s algorithm recovers the order of
the public key, namely x. This can be extended to any group, so Elliptic Curve
Cryptography is also not a post-quantum candidate.

Shor’s algorithm also destroys the security of RSA. At a very high level, we
sample an element x and consider its order mod N . We do this until we find
an element x with even order r so that xr/2 (mod N) ̸= −1. Then we find that
xr − 1 ≡ 0 (mod N) so that (xr/2 − 1)(xr/2 + 1) ≡ 0 (mod N); using Euclid’s
algorithm we find a non-trivial factor of N by considering the gcd of (N, xr/2−1)
or (N, xr/2 + 1).

3 Postquantum cryptography - KEMs
A KEM is a key encapsulation mechanism: at the end of the process, both
parties should share a key.

2

Figure 1: This figure from the Netherlands National Communications Secu-
rity Agency https://publications.tno.nl/publication/34641918/oicFLj/attema-
2023-pqc.pdf nicely summarises the PQC options we have today.

3

https://publications.tno.nl/publication/34641918/oicFLj/attema-2023-pqc.pdf
https://publications.tno.nl/publication/34641918/oicFLj/attema-2023-pqc.pdf

3.1 NIST standardisation process
Lattice-based cryptography The ultimate ‘winner’ of the process - Kyber
(now called ML-KEM) was the scheme chosen as the KEM for standardisation,
and its corresponding signature scheme (Dilthium) also chosen. More on lattices
in a future lecture.

• Hardness: Shortest vector problem (find a short vector in a high-dimensional
lattice)

• Practical: fastest encryption

• At NIST Level 3 parameters (Kyber):

– 1184 bytes for a public key

– 2400 bytes for a secret key

– 1088 bytes for a ciphertext

Code-based cryptography The first code-based public-key cryptosystem
was introduced in 1978 by McEliece.

A linear code C is a k-dimensional linear subspace in Fn
q . This means that

if c, d ∈ C and α, β ∈ Fq, then αc+ βd ∈ C.
An example of a code in F3

2 is vectors of weight 2: the codewords are {110, 101, 011}
and 110 + 101 = 011, 101 + 011 = 110, 110 + 011 = 101.

A t-error correcting (binary) code means that any pair of ‘codewords’ (ele-
ments of the subspace) differ in at at least 2t+ 1 elements.
Our above example is not error correcting - for example, if we see one error and
get 111, then we don’t know which codeword it originally was. Compare this to
the triple-repetition code: codewords are 111 and 000; if we experience a single
error we know which codeword ought to have been transmitted.

In Classic McEliece, we use a random binary Goppa code. The ‘binary’ part
means that it’s defined over F2; the ‘Goppa’ part means that it the code is
specified in a special algebraic way (corresponding to an irreducible polynomial
over F2m of degree t), that makes the scheme secure and efficient. A binary
Goppa code is t-error correcting - this means that any code word is separated
by Hamming distance t/2.

To encrypt, pick n = 2m and t and randomly select an irreducible1 polyno-
mial g of degree t over F2m and a sequence of elements L1, . . . , Lk ∈ F2m ; from
this we construct a code: codewords are elements that satisfy:{

c ∈ {0, 1}k :

k∑
i=1

ci
x− Li

= 0 mod g(x)

}
.

Because codewords form a vector space, they have a basis, from which we can
extract a k×n generator matrix G (which we can put into canonical form after

1Irreducibility can be relaxed to g having no repeating roots

4

a basis change, so that the top left of G is the k × k identity matrix). This is
computationally very straightforward.

The public key is a random ‘scrambling’ of G: a random dense non-singular
matrix S and a random permutation matrix2 P is chosen; the public key is
G′ = SGP . This is essentially a ‘bad’ basis of G.

To encode a message m, we choose an ‘error’ vector z containing exactly t
ones, and send c = mG′ + z.

The private key is a basis of the code that enables efficient decoding (using
‘Patterson’s algorithm’). It enables an efficient way to recover m given c.

• Hardness: decoding problem for linear codes is NP-complete. BUT this
harness is only true for an arbitrary linear code, whereas a Goppa code
has structure.

• McEliece is one of the oldest schemes – no progress has been made on the
decoding problem for Goppa codes, which lends weight to security.

• Practical: Short ciphertexts - importantly under 256 bytes; this is great
for fiting ciphertexts inside single network packets.

• At NIST Level 3 parameters (Classic McEliece):

– 524160 bytes for a public key

– 13608 bytes for a secret key

– 156 bytes for a ciphertext

• Problem: Size of public key is between 0.25MB and 1.35MB. For context,
the plaintext version of Little Women comes in at 1MB, so the public key
requirement of McEliece demands exchanging novels in advance.

BIKE (Bit FlIpping Key Encapsulation) and HQC (Hamming quasi-cyclic
codes) are other examples of code-based schemes that are currently alternate
candidates in the NIST competition. Because the codewords have different
structures, they use different decoding algorithms.

BIKE has shorter keys (significantly shorter public key, slightly shorter pri-
vate key) but larger ciphertexts; HQC has small public and private keys (similar
in size to BIKE’s public key) but a larger ciphertext again.

4 Signature Schemes
There are three signature schemes that were selected for standardisation: Crystals-
Dilithium (LWE-based), Falcon (NTRU-based) and SPHINCS+ (hash-based).
None of the candidates are ideal drop-in replacements, so NIST have created an-
other standardisation process aiming to seek more diversity in signature schemes.

2A permutation matrix is a binary matrix with exactly one non-zero entry in each row and
each column.

5

Lattice-based Not really adding diversity

Symmetric-based Signatures Promising - SPHINCS+ has been standard-
ised, but it’s quite big (because it’s using Merkle tables)

MPC-in-the-Head Signatures MPC = Multi-party computation. This is a
way to create a zero-knowledge proof for a relation R, given a secure multiparty
computation protocol to compute R.

Multivariate Signatures Multivariate cryptography suffered a catastrophic
reputation blow with the break of Rainbow, a finalist in the NIST competition.
However, other Multivariate Signature schemes could still be promising....

Isogeny-based cryptography Isogeny-based cryptography is a relatively
new field. However, the final round of the process saw a devastating break
for the isogeny-based scheme SIKE that was put forward for standardisation.
What does this mean for isogeny schemes? Find out in a future lecture!

Additional Reading3

[1] Martin R Albrecht et al. “Classic McEliece: conservative code-based cryp-
tography”. In: (2022). url: https : / / inria . hal . science / hal - 04288769 /
document.

[2] Nicolas Aragon et al. “BIKE: bit flipping key encapsulation”. In: (2022).
url: https://inria.hal.science/hal-04278509/document.

[3] Robert J McEliece. “A public-key cryptosystem based on algebraic”. In:
Coding Thv 4244 (1978), pp. 114–116. url: https://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF.

[4] Carlos Aguilar Melchor et al. “Hamming quasi-cyclic (HQC)”. In: NIST
PQC Round 2.4 (2018), p. 13. url: https : / / pqc - hqc . org / doc / hqc -
specification_2023-04-30.pdf.

3NIST host a series of seminars about the PQC standardisation process - here you can find
seminars on BIKE/McEliece/HQC, which might help with the additional reading. Link: https:
//csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars

6

https://inria.hal.science/hal-04288769/document
https://inria.hal.science/hal-04288769/document
https://inria.hal.science/hal-04278509/document
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars

	Introduction
	Shor's algorithm and Grover's algorithm
	Impact on symmetric cryptography
	Impact on asymmetric cryptography

	Postquantum cryptography - KEMs
	NIST standardisation process

	Signature Schemes

