
Zero-knowledge Proofs

Luciano Maino

University of Bristol - Advanced Cryptology

1 Introduction

Let’s consider the following scenario. We have two identical balls, differing only in colour
- one is green, and the other is red. Alice, who is red-green color-blind, is skeptical that
these balls are truly different. We want to convince her that they are, but without
revealing which ball is red. So, how can we achieve this?

We could play the following game. We hand both balls to Alice. She randomly
selects one ball and shows it to us. Then, she takes the ball back and either shows us
the same one or swaps it for the other. Alice knows whether she has switched the balls
or kept the same one.

Our task is to tell her whether the ball she shows is the same as the one she
showed before. If we couldn’t distinguish between the two balls, we would have to
guess randomly, succeeding with probability of 1/2.

Being fooled with probability 1/2 is actually not satisfactory for Alice, so she repeats
the same game again. This time, if we were trying to cheat, our chance of guessing
correctly would drop to 1/4. After repeating this process n times, the probability of
fooling Alice lowers down to 1/2n. It doesn’t take long to convince Alice they are
different.

This is an example of what is in cryptography a Zero-knowledge proof. A Zero-
knowledge proof is a protocol in which a prover needs to convince a verifier that
a certain statement is true, without revealing any additional information about this
statement.

2 Σ protocols

Let’s first introduce some formalism.

Definition 1 (Informal). Let X and W be two non-empty sets. A relation R is a
subset of X ×W . A language L for R is subset of X such that, for each x ∈ L, there
exists a w ∈ W verifying (x,w) ∈ R. Given (x,w) ∈ X × W , we will assume that
checking (x,w) ∈ R is “efficient”, whereas given an x ∈ L, it is “hard” to compute any
w ∈W such that (x,w) ∈ R.

Example 2. Let E be an elliptic curve and let P be a point on E such that the ECDLP
is a hard problem (for instance, Curve25519). Also, let ℓ denote the order of P .

R = {([n]P, n) | n ∈ {0, ℓ− 1}} and L = {[n]P | n ∈ {0, ℓ− 1}} .

2 L. Maino

The scenario we have described in Section 1 is an example of interactive proof sys-
tem. An interactive proof system allows a prover P to prove to a verifier V something
they know. In cryptography, the notion of “prover and verifier” is usually captured mod-
elling them as probabilistic polynomial time (PPT) algorithms. The most important
example of interactive proof system is the Σ protocol.

In a Σ protocol, a prover P wants to prove the knowledge of (x,w) ∈ R to a
verifier V. This is achieved engaging in a three-round protocol. The prover P consists
of two PPT algorithms and P1, P2, whereas the verifier V is described by the PPT
algorithm V .

First, the prover P computes a commitment com running P1 on input (x,w). After
receiving the datum com, the verifier V samples a random chl from the challenge space Ω
and sends it over to the prover. The challenge space must be large enough to prevent
that an attacker could guess the challenges beforehand.

The prover now runs the algorithm P2 on input (x,w, com, chl) and obtains a re-
sponse rsp. The verifier finally runs V on (x, com, chl, rsp) and returns 1 if they are
convinced about the fact that P knows a witness for the statement x; otherwise they
output 0. This interactive protocol is summarised in Figure 1.

Prover Verifier

com← P1(x,w)

chl←$ Ω

rsp← P2(x,w, com, chl)

{0, 1} ← V (x, com, chl, rsp)

Fig. 1. Diagram describing Σ protocols.

The tuple (com, chl, rsp) is a transcript for the interactive protocol. A Σ protocol
must verify the following properties.

Completeness: If the prover P follows the prescribed protocol, then the verifier V
will output 1 with overwhelming probability.

Special Soundness: There exists a PPT algorithm Extr, called the extractor, ca-
pable of extracting witnesses from statements as follows. Let x be a statement in L
and let (com, chl, rsp) and (com, chl′, rsp′) be two transcripts such that chl ̸= chl′, 1 ←
V (x, com, chl, rsp) and 1← V (x, com, chl′, rsp′). Then Extr(x, com, chl, rsp, chl′, rsp′) re-
turns a witness w such that (x,w) ∈ R.

Zero-knowledge Proofs 3

Honest-Verifier Perfect Zero-Knowledge: There exists a PPT Sim, called the
simulator, that, on input a statement x ∈ L, can create a valid transcript (com, chl, rsp)
for x. Moreover, the distribution of its outputs is identical to the distribution of the
transcripts obtained via honest interactions between P and V.

Remark 3. It is worth noting that if a Σ protocol is Honest Verifier Perfect Zero-
Knowledge, it doesn’t mean that the simulator Sim is capable of interacting and con-
vincing a verifier V.

The transcripts generated by Sim are generated adaptively. For instance, the Sim
could first choose a challenge chl and then craft an appropriate commitment com.

3 Schnorr protocol

We now give a concrete instantiation of a Σ protocol, the famous Schnorr protocol.
Let E be an elliptic curve and let P be a point on E such that the ECDLP is a hard
problem. The Schnorr protocol is a Σ protocol for the language in Example 2.

Let (Q,n) ∈ R. The Schnorr protocol is described in Figure 2. We now prove it is
complete, special sound and honest-verifier perfect zero-knowledge.

Prover Verifier

r ←$ {0, . . . , ℓ− 1}
Pcom ← [r]P

chl←$ {0, . . . , ℓ− 1}

rsp← n · chl+ r (mod ℓ)

Pcom ⊕ [chl]Q
?
= [rsp]P

Fig. 2. Schnorr protocol

Completeness: We will use the same notation as in Figure 2. Given the transcript
(Pcom, chl, rsp) we have

Pcom ⊕ [chl]Q = [r]P ⊕ [chl][n]P = [r + chl · n]P,

from which the correctness follows.

4 L. Maino

Special Soundness: We now have to show the existence of an efficient extractor.
Let (Pcom, chl, rsp) and (Pcom, chl

′, rsp′) be two transcripts for the pair (Q,n) such that
chl ̸= chl′.

Recall that to have that the ECDLP is hard, we must have that the order of P
is a large prime ℓ. This means that the quantity chl − chl′ ̸= 0 (mod ℓ) is invertible
modulo ℓ. We claim that rsp−rsp′

chl−chl′ (mod ℓ) is a valid witness for Q, i.e.[
rsp− rsp′

chl− chl′
(mod ℓ)

]
P = Q,

which is equivalent to showing that

[rsp− rsp′]P =
[
chl− chl′

]
Q.

We observe that

[rsp− rsp′]P = Pcom ⊕ [chl]Q⊕ [−1]Pcom ⊕ [−chl′]Q,

from which our claim follows.
To summarise, we have constructed an extractor that, given (Pcom, chl, rsp) and

(Pcom, chl
′, rsp′), returns rsp−rsp′

chl−chl′ (mod ℓ), which can be done efficiently.

Honest-Verifier Perfect Zero-Knowledge: To prove this property, we need to
exhibit an efficient simulator. The simulator works in this way. The first step is to
uniformly sample a chl from the challenge space Ω. Then, the simulator also samples a
random z ←$ {0, . . . , ℓ− 1}. The commitment will be given by Pcom = [z]P ⊕ [−chl]Q,
whereas the response is given by rsp = z.

It is clear that the transcript (Pcom, chl, rsp) will be accepted by the verifier V. We
now have to argue that this transcript is indistinguishable from all the other honestly
generated transcripts. First, we note that the distribution over the challenges is the
same. Also, the distribution of n ·chl+r (mod ℓ) for a uniformly sampled r is the same
as the one of a random z sampled from {0, . . . , ℓ− 1}. The final step is then to observe
that the subgroup generated by P is isomorphic to Z/ℓZ, from which it derives the
claim on the indistinguishability of the transcripts output by our simulator.

4 Fiat-Shamir Heuristic

A Σ protocol is an interactive protocol between two parties, a prover and a verifier. This
protocol can be made non-interactive using a transformation called the Fiat-Shamir
transform. The main idea is to replace the challenge data sent by the verifier with
something else, which can be computed without interaction. In practice, this “something
else” is a hash function H that generates challenges depending on the commitment.

It turns out, that any Σ protocol verifying the properties above can be transformed
into an EUF-CMA digital signature scheme. We briefly recall that a digital signature
scheme is existentially unforgeable under an adaptive chosen-message attack if, even

Zero-knowledge Proofs 5

when an attacker can query an oracle to obtain valid signatures for chosen messages,
the attacker is still unable to generate a valid signature for any message not previously
queried to the oracle.

More formally, let A be a PPT adversary playing the following game.

1. (sk, pk)← KeyGen();
2. Given pk, the adversary A chooses M̃ = {m1, . . . ,mn} and queries an oracle which

outputs the signatures of the messages in M̃.
3. The adversary A wins the game if they are able to sign a message not in M̃.

A signature scheme is EUF-CMA if no PPT adversary A can win the above game with
non-negligible probability.

We now explain how to obtain a digital signature scheme from the Schnorr protocol.
Roughly speaking, the secret key is the witness corresponding to a statement, which
plays the role of the public key.

KeyGen()

1. sk←$ {0, . . . , ℓ− 1}.
2. pk← [sk]P .
3. return (sk, pk).

To sign a message m contained in a certain space M, we need to have a “robust”
hash function H :M× E → {0, . . . , ℓ− 1}.

Sign(m, sk, pk)

1. r ←$ {0, . . . , ℓ− 1}.
2. Pcom ← [r]P .
3. chl← H(m,Pcom).
4. rsp← sk · chl+ r.
5. return (Pcom, rsp).

To verify that a message m has been correctly signed, the verifier has to first
generate the challenge themselves and then run the verification process as in the Σ
protocol.

Verify(m, pk, Pcom, rsp)

1. chl′ ← H(m,Pcom).
2. return Pcom ⊕ [chl′]Q

?
= [rsp].

Remark 4. It is worth noting that the Schnorr protocol is commitment recoverable. It
means that given a correct (chl, rsp), it is possible to recover Pcom. Sending chl usually
incur lower bandwidth requirements. The verification can then be modified to have
first recover Pcom and then check that the hash output coincide with the challenge chl.

6 L. Maino

5 Additional Readings

[2] “Cryptography Made Simple”, Smart; Chapter 21.
[1] "Introduction to Modern Cryptography", Katz and Lindell; Section 12.5.
[3] “Proofs, Arguments, and Zero-Knowledge”, Thaler.

References

1. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC Press
(2014)

2. Smart, N.P.: Cryptography Made Simple. Springer Publishing Company, Incorporated
(2015)

3. Thaler, J.: Proofs, Arguments, and Zero-Knowledge, vol. 4. Foundations and Trends® in
Privacy and Security (2022)

	Zero-knowledge Proofs

