Why software engineers don’t get bonuses
(or Rowhammer, Meltdown and Spectre)

Joseph Hallett

November 13, 2023

Elé University of
[BEI BRISTOL

Abstraction, abstraction...

In computer science we like to pretend that it's all digital...
> Perfect 1s and Os.
> Computers that work exactly how the specifications say.
» Hardware can be (largely) ignored.
> Lower level details... that's for electrical engineers not us!

This doesn’t always work out.

Money, money, money...

It mostly works out though...
> But this whole unit is about what happens when computers start doing weird things.

Electrical engineers, and computer architects make mistakes
Cost of fixing hardware is big

> You cannot trivially fix a silicon wafer

> You cannot recall old hardware and change the circuits
Cost of fixing software is cheap

> It's just codel

When there is a bug... its the software engineers who fix it
Consequently we have to clean up after their messes

> So software is always running late

> So we don't get a bonus : - (
(or so said my first boss)

Plan

In this lecture we'll cover two ways hardware is broken.
> Rowhammer and DRAM
> Meltdown/Spectre and CPUs

We'll also cover how software works around it.

DRAM glorious, DRAM!

Memory! Used to store all the things the computer is thinking about that we can't fit ina
register!

> Implemented using a capacitor and a transistor per bit
> Ganged (arranged) into long rows (~8k bits per row)
> Placed into banks of ganged rows
When we want to read a bit of memory:
> We find the row it is in.
> Activate the row by letting the capacitors discharge
> Which copies the row into an active memory buffer
DRAM needs to be refreshed so the capactiors don't lose their charge over time
> Roughly every 64ms for modern hardware

Electronic Engineering is messy

Capacitors leak charge
Current in wires induces current in other nearby wires
The 1s and 0s aren’t charged or uncharged capacitors

» Tts whether a capacitor is currently discharging more or less than a threshhold voltage
But this is all fine because electronic components are large!

Or they were...

> As memory capacity has increased...
» The physical dimensions of memory has got smaller.

“The Dwarves Electrical engineers tell no tale; but even as mithrit memory density was
the foundation of their wealth, so also it was their destruction: they delved too greedily
and too deep, and disturbed that from which they fled, Burin's-Bane Rowhammer."

— 6andalf the Greyhat

Flipping bits

Flipping Bits in M

y Without A

g Them:

An Experimental Study of DRAM Disturbance Errors

Yoongu Kim' Ross Daly*

Jeremie Kim' ~ Chris Fallin® Ji Hye Lee!

Donghyuk Lee' Chris Wilkerson? Konrad Lai ~ Onur Mutlu'

!Camnegic Mellon University

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access 10 one memory ad-
dress should not have unintended side effects on data siored
in other addresses. However, as DRAM process technology
scales down 0 smaller dimensions, it becomes more difficuit
10 prevent DRAM cells from electrically interacting with each
other: In this paper, we expose the vulnerability of commodity
DRAM chips to disturbance errors. By reading from the same
address in DRAM, we show that it is possible to corrupt data
in nearby addresses. More specifically, activating the same
in DRAM corrupis data in nearby rows. We demonsirate
s phenomenon on ntel and AMD s sems using malleous
program that generates many DRAM accesses. We ind.
erroys in mosi DRAM modiules (110 out of 199) from three
major DRAM manufacturers. - From this we conclude that
many deployed systems are likely 10 be at risk. We identify
the rot case of disturance errrs s the repeated tgsling
of a DRAM row’s wordline, which stresses inter-cell coupling
effects that accelerate charge leakage o neary rows, We

*Intel Labs

isturbance errors, DRAM manufacturers have been employ-
ing a two-pronged approach: (i) improving int isola-
tion through circuit-level techniques [22, 32, 49, 61, 73] and
(1) sreenin for dstubancs erors during post-production
3,4, 64]. We demonstrate that their efforts (o contain
istubanee efors have not shways been suceessfal,and tht
erroneous DRAM chips have been slipping into the field.!

Tn this paper, we expose the existence and the widespread
nature of disturbance errors in commodity DRAM chips sold
and used today. Among 129 DRAM modules we analyzed
(comprising 972 DRAM chips), we discovered disturbance
errors in 110 modules (836 chips). In particular, all modules
manufactured in the past two years (2012 and 2013) were vul-
nerable, which implies that the appearance of disturbance er-
rors in the field is a relatively recent phenomenon affecting

that it takes as few as 139K reads to a DRAM address (more
generally, to a DRAM row) to induce a disturbance error. As
& proof of concept, e constuct 2 serlvel progran that

provide an extensive cer-
rors and their behavior using an FPGA-based testing plat
form.” Among our key findings, we show that (i) it takes as
few as 139K accesses to induce an error and (if) up 10 one in
every 17K cells is susceptible to errors. After examining var-
ious potential ways of addressing the problem, we propose a
low-overhead solution to prevent the errors.

1. Introduction

The continued scaling of DRAM process technology has
enabled smaller cells o be placed closer to cach other. Cram
ming more DRAM cells into the same arca has the well-
k

ing
Increasing the cell Alenuly, however, also has a negative
impact on memory reliability due to three reasons. Fir
a small cell can hold only a limited amount of charge.

he number of outlier cells that are excep-
1l crosstalk, exacerbating the

N issuing many loads to the
Same adress while fushing the cachc-lne in between.
demonstrate that such a program induces many disturbance
errors when executed on Intel or AMD machines.

‘We identify the root cause of DRAM disturbance errors as
voltage fluctiations on an internal wire called the wordline.
DRAM comprises 4 two-dimensional aray of cells, where
each row of cells has its own wordline. To access a cell within
a parcula row. the row's wordling must be cnabld by

ing — i.c., the row must be activated. When there
are n\any ctivations 1o the same row, they force the word-
line to toggle on and off repeatedly. According to our obser-

ations, such voltage fluctuations on a row’s wordline have
a disturbance effect on nearby rows, inducing some of their
cells to leak charge at an accelerated rate. If such a cell loses
too much charge before it is restored to its orig value (ie.,
refreshed), it experiences a disturbance error.

‘We comprehensively characterize DRAM disturbance er-
rors on an FPGA-based testing platform to understand their
behavior and symptoms. Based on our findings, we exam-
ine a number of potential solutions (e.g., er nrm.unn ind
frequent refreshes), which all have some limitations. We pro-
pose an effective and low-overhead solution, mllcd PARA.

3.-_

Rowhammering is a well known bug in DRAM
chips since ~2010

If you repeatedly charge and
discharge a row in DRAM really
quickly it can cause errors in
nearby rows

Manufacturers all knew about it, but didn't
really bother to document it.

> Seenas a reliability issue, not a security
issue

> Cached memory largely fixes it.
Several papers discuss it and explore it

> Almost all RAM is vulnerable to it (to
some extent)

> Maybe you could do something malicious
theoretically?

> Still treated as a reliability issue

Flipping bits, in practice

Find two memory addresses X and Y that are

codela: in separate rows of RAM and:
mov eax, [X] 1. Load *X into the active buffer
mov ebx, [Y]
clrflush [X] 2. Load *Y into the active buffer
clrflush [Y] .
mfence 3. Kick *X out of the cache (so hext read
jmp codela goes directly to RAM)

4. Kick *Y out of the cache (so next read
goes directly fo RAM)

5. Ensure that the cache is really gone
6. Repeat (as fast as you can)

Token ASCII Art Diagram

If you perform the rowhammer with the above RAM layout
| L > Eventually you'll get errors in the adjacent rows (the !'s)

Fommmmm—— + o . . .
Row n+0 | - X > This is called single-sided Row Hammering
e ————— +
Row n+1 | | |
tommm— +
Row n+2 | |
Fmmm————— +
Row n+3 | [
+om————— +
Row n+4 | <= Y
tommm— +
I Lo
Fmmm +
Active |X/Y/X/Y/

| I
+ommm +

Double Sided Rowhammering

If you select X and Y so there is excactly 1 row between them
| | > Eventually you'll get errors in the adjacent rows (the !'s)

Fommmmmms * . ' . .
Row n+0 | U > Quickly you'll get errors in the in-between row
FommmTmT * > This is called double-sided Row Hammering
Row n+1 | - X
tommm— +
Row n+2 [1ILLIINT]
Fmmm————— +
Row n+3 | <= Y
+om————— +
Row n+4 | | |
tommm— +
| |
Fmmm +
Active |X/Y/X/Y/

| I
+ommm +

So what?

So we can infroduce (typically) single bit errors in RAM... so what?
Mark Seaborne and Halvar Flake (and others) continue exploring

> Discover double-sided variant of Rowhammering

> Find that its not just all RAM which is susceptible to this, but that its all rows in all ram
(between 30-100%... but improvements later make it 100%).

They discover the bit flips are consistent
> Same bits flip every time when you Rowhammer the same rows

And even consistent between the same RAM products
> If Alice and Bob have the same make RAM from the same manufacturer
» Then if they Rowhammer the same rows the same bits will always flip

This seems bad, but so what?

> You can violate the integrity of RAM, but is that all?
> How could you possibly use this as part of an attack to get arbitrary code execution?

NaCl Sandbox

Privileged sandbox for running native code from a web browser safely.
> Checks if the code is safe (i.e. doesn't contain any weird syscalls or violate safety
properties)
> If so, it loads the chunks of instructions aligned on 32B boundaries

and eax, OxO000F ; Truncate address to 32 bits and mask to be 32-byte aligned
add rax, r15 ; Add r15, the sandbox base address
jmp [rax] ; Jump to the loaded code snippet

Can we use Rowhammer to escape the sandbox?
(T mean obviously we can, but its more fun if you work out how to do it rather than me telling you...)

Variadic Instruction Sets

X86 is a dense instruction set
> Different instructions have different lengths
> Some have multiple length

20ea0: 48 b8 Of 05 eb Oc f4 f4 f4 f4 movabs rax, Oxf4f4f4ff40ceb050f
20ea2: of 05 syscall
20ea4: eb Oc jmp Oxe

Last chance to guess the exploit?

Escaping NaCL

Code section is readable, so lets try and Rowhammer that and eax, ©0x000F!

> Conveniently the code section is also readable (but not writable) by the loaded process so
we can tell if it has worked

So the attack:

1. Load a sequence of safe code that happens to be unsafe if you were to run it with a 1-bit
offset

2. Rowhammer the loading code so that NaCl checks the code with no-offset, but runs it with
an of fset

3. Probably the program is gonna crash ‘cos the loading code isn't valid
. Or we Rowhammer the Kernel's memory and crash the entire computer
5. _.or it works?

Luckily most unprivileged users are allowed to run crashy programs
millions of times without batting an eyelid
See this course.

Whoops!

Mark Seaborn and Halvar Flake have managed to Rowhammer their way to aribtrary code
execution.

> Guess it was security bug after all... B-)
> Also publish a similar but fiddlier Linux root privilege escallation attack using Rowhammer

Short term:
» clflush is banned in NaCl loaded code
» clflush is banned from non-root code (sometimes)

Those aren’t sustainable solutions...

Buy better RAM?
» But how do you tell?
..with error correction codes (ECC)?
> Expensive though, and slower (worth it for a server, not for a laptop...)

> Still a potential denial of service/vulnerability if you can corrupt multiple bits at once with
Rowhammer

..which refreshes faster?
» If you can't Rowhammer faster than the refresh speed the attack doesn't work
» But this slows down the whole computer.
..and which refreshes neigbouring rows more often?
> More recent DRAM standards do this...
> Again, slows things down.

Are we depressed yet?
Have you considered taking up pottery?

> Mud is not susceptible to Rowhammer or any of the
techniques covered in this course

> Mud will not make you sad (except when your bowls
collapse)

> You can make bowls and mugs and super cute pots!

Honestly, I cannot recommend it highly
enough.

CPU Pipelines

CPU

Fetch —m|{ Decode

—! Execute

=

Writeback

In modern CPUs instructions take different times to complete...

So we pipeline them

> As one instruction is executing...

> The next can be being decoded...

> And the next can be being fetched.
Significant performance gains!

Branch Prediction

unsigned long facfor'ml(uns:gned long n) {
unsigned long result = 1;

while (n) [[likely]]
result x= n--;

return result

}

Conditionals can cause a problem however...
> Can't load fetch the next multiply until we know if n>0
> So pipeline stalls

Solution
Speculate that the loop is likely to be taken...

> CPU assumes it will be and fetches anyway

> If the assumption is wrong the CPU pipeline will have to be flushed before writeback...

» ..but that should only happen once per call

> Speedup from removing the pipeline stall is bigger than the single pipeline flush
More performance gains!

> Especially with Symmetric Multi-Threading.

Watch the pointer closely...

Suppose we have two arrays: arrayl and array2:
» What happens if we run this code?

if (x < arrayl_size) [[likely]]
y = array2[arrayl[x]]:

Which array is the pointer under?

y gets indexed by whatever is in array[x]
What about if x > arrayl_size?

if (x < arrayl_size) [[likely]]
y = array2[arrayl[x]];

No, unfortunately that’s a lemon...

The if statement won't succeed...
..but we said it was likely to succeed so the next line will be speculatively executed anyway

if (x < arrayl_size) [[likely]]
y = array2[arrayl[x]]:

And that would segfault anyway...
> And it would be mean to segfault on an instruction you never were going to execute.
> So we don't... even if we've speculatively executed it.
As soon as the branch misprediction is detected start the rollback process
» Undo changes to registers
> Reset exception flags
> Cancel any memory writes

Jobs a good ’un, am I write ?

Just the writes?

if (x < arrayl_size) [[likely]]
y = array2[arrayl[x]];

See the caches are a separate subsystem and managed by the MMU.

> When the second line executes the page of memory containing array2[array1[x]] will
be cached in preparation for the load into y

> And an exception signalled...
> That the CPU will tell the OS about when it hits writeback...
> _.which will never actually happen because the if will turn out to be a branch misprediction

Everything is still good right?

Oh dear...

Suppose we guarantee that for every different value of x a different page of memory will be
cached?

if (x < arrayl_size) [[likely]]
y = array2[arrayl[x]x4096];

(and that the branch will ALWAYS be mispredicted by the CPU).

Oh dear, Oh dear...

And then we were to time how long it ook to access every page of memory...

[P]

E — 500 ' '

2 2 400

& 3 300

< 200 | | .
0 50 100 150 200 250

Page

Anyone want to guess what the value at array1[x] was?
» Which reading should have caused a segfault of ...

Oh dear, Oh dear, Oh dear

Suppose this attack also worked not just with C but via Javascript...

if (index < simpleByteArray.length) {

index = simpleByteArray[index | O]

index = (((index x 4096)|0) & (32x1024%1024-1))|0;
localJunk "= probeTable[index|0]|0;

So you can leak a byte of memory... big deal?
» But given a few hours you could leak all of memory
> On any system where you can host a webpage
Good job nothing useful is ever in memory, eh?

> Keys, personal data, certificates, passwords...

So how are we going to fix this?

This is the Spectre vulnerability, and is part of the Meltdown family of attacks:
Meltdown (CVE-2017-5754) melts down security barriers
Spectre (CVE-2017-5753 CVE-2017-5715) make speculative execution scary
Affects:
> All operating systems
> All CPUs with branch prediction

No, seriously please, how do we fix this?

We have a couple of ideas:

Disable branch prediction would require all new hardware, and have an enormous
performance impact

Disable caches would require all new hardware and have an enormous performance impact

Disable multithreading doable is software for most architectures, but would halve the
number of available cores. Also doesn't actually fix the issue but makes
everything much harder to exploit

Which one do you think we've gone with?

Anyone’s computers feeling a bit slow?

When I was growing up everytime they made new computers they always felt lots faster...
> Anyone not really noticed this recently?

We do have other mitigations other than turning SMT off...
> but none of them are perfect, and all have an impact
> and turning multithreading off really does make this much, much harder to exploit

cat /sys/devices/system/cpu/vulnerabilities/{meltdown, spectrex}

Mitigation: usercopy/swapgs barriers and __user pointer sanitization
Mitigation: Enhanced IBRS, IBPB: conditional , RSB filling , PBRSB-eIBRS: SW sequence

And on your kernel commandline:

noibrs noibpb nopti nospectre_v2 nospectre_vi l1tf=off
nospec_store_bypass_disable no_stf_barrier mds=off tsx=on
tsx_async_abort=off mitigations=off

It isn’t just you...

Timed Kernel Compilation | in seconds, lower is better | linuxreviews.org

6800K, no mitigations

| 8

6800K, default

sso0. ot v svr o | >
erox. oo | -
erox, st v svr o | -

20 40 60 80 100 120 140

110

(=]

About a 25-30% performance penalty in the worst case
About a 10% in general usage

160

So in conclusion...

Computer hardware fundamentally broken
> RAM doesn't work
> CPUs fundamentally broken
Software can give us a solution!
» But no one is happy about it
> More cost, slower performance
> And so no bonuses for you

My suggestion to all of you

People will always need clothes!

> Sewing is fun!
> It's about an evenings work to make a hawaiian shirt!

> Sewing machines not vulnerable to any attacks in
this course
> (unless they're really fancy...)

