
Why software engineers don’t get bonuses
(or Rowhammer, Meltdown and Spectre)

Joseph Hallett

November 13, 2023

Abstraction, abstraction…

In computer science we like to pretend that it’s all digital…

I Perfect 1s and 0s.

I Computers that work exactly how the specifications say.

I Hardware can be (largely) ignored.

I Lower level details… that’s for electrical engineers not us!

This doesn’t always work out.

Money, money, money…

It mostly works out though…

I But this whole unit is about what happens when computers start doing weird things.

Electrical engineers, and computer architects make mistakes
Cost of fixing hardware is big

I You cannot trivially fix a silicon wafer

I You cannot recall old hardware and change the circuits

Cost of fixing software is cheap

I It’s just code!

When there is a bug… its the software engineers who fix it
Consequently we have to clean up after their messes

I So software is always running late

I So we don’t get a bonus :-(
(or so said my first boss)

Plan

In this lecture we’ll cover two ways hardware is broken.

I Rowhammer and DRAM

I Meltdown/Spectre and CPUs

We’ll also cover how software works around it.

DRAM glorious, DRAM!

Memory! Used to store all the things the computer is thinking about that we can’t fit in a
register!

I Implemented using a capacitor and a transistor per bit

I Ganged (arranged) into long rows (~8k bits per row)

I Placed into banks of ganged rows

When we want to read a bit of memory:

I We find the row it is in.

I Activate the row by letting the capacitors discharge

I Which copies the row into an active memory buffer

DRAM needs to be refreshed so the capactiors don’t lose their charge over time

I Roughly every 64ms for modern hardware

Electronic Engineering is messy

Capacitors leak charge

Current in wires induces current in other nearby wires

The 1s and 0s aren’t charged or uncharged capacitors
I Its whether a capacitor is currently discharging more or less than a threshhold voltage

But this is all fine because electronic components are large!

Or they were…

I As memory capacity has increased…

I The physical dimensions of memory has got smaller.

“The Dwarves Electrical engineers tell no tale; but even as mithril memory density was
the foundation of their wealth, so also it was their destruction: they delved too greedily
and too deep, and disturbed that from which they fled, Durin’s Bane Rowhammer.”
— Gandalf the Greyhat

Flipping bits
Rowhammering is a well known bug in DRAM
chips since ~2010

If you repeatedly charge and
discharge a row in DRAM really
quickly it can cause errors in
nearby rows
Manufacturers all knew about it, but didn’t
really bother to document it.

I Seen as a reliability issue, not a security
issue

I Cached memory largely fixes it.

Several papers discuss it and explore it

I Almost all RAM is vulnerable to it (to
some extent)

I Maybe you could do something malicious
theoretically?

I Still treated as a reliability issue

Flipping bits, in practice

code1a :
mov eax , [X]
mov ebx , [Y]
c l rf lush [X]
c lrf lush [Y]
mfence
jmp code1a

Find two memory addresses X and Y that are
in separate rows of RAM and:

1. Load *X into the active buffer

2. Load *Y into the active buffer

3. Kick *X out of the cache (so next read
goes directly to RAM)

4. Kick *Y out of the cache (so next read
goes directly to RAM)

5. Ensure that the cache is really gone

6. Repeat (as fast as you can)

Token ASCII Art Diagram

| ! |
+−−−−−−−−+

Row n+0 | <− X
+−−−−−−−−+

Row n+1 | ! |
+−−−−−−−−+

Row n+2 | |
+−−−−−−−−+

Row n+3 | ! |
+−−−−−−−−+

Row n+4 | <− Y
+−−−−−−−−+
| ! |

+−−−−−−−−+
Active |X/Y/X/Y/|

+−−−−−−−−+

If you perform the rowhammer with the above RAM layout

I Eventually you’ll get errors in the adjacent rows (the !’s)
I This is called single-sided Row Hammering

Double Sided Rowhammering

| |
+−−−−−−−−+

Row n+0 | ! |
+−−−−−−−−+

Row n+1 | < − X
+−−−−−−−−+

Row n+2 | ! ! ! ! ! ! ! ! |
+−−−−−−−−+

Row n+3 | <− Y
+−−−−−−−−+

Row n+4 | ! |
+−−−−−−−−+
| |

+−−−−−−−−+
Active |X/Y/X/Y/|

+−−−−−−−−+

If you select X and Y so there is excactly 1 row between them

I Eventually you’ll get errors in the adjacent rows (the !’s)
I Quickly you’ll get errors in the in-between row

I This is called double-sided Row Hammering

So what?

So we can introduce (typically) single bit errors in RAM… so what?

Mark Seaborne and Halvar Flake (and others) continue exploring
I Discover double-sided variant of Rowhammering

I Find that its not just all RAM which is susceptible to this, but that its all rows in all ram
(between 30–100%… but improvements later make it 100%).

They discover the bit flips are consistent

I Same bits flip every time when you Rowhammer the same rows

And even consistent between the same RAM products

I If Alice and Bob have the same make RAM from the same manufacturer

I Then if they Rowhammer the same rows the same bits will always flip

This seems bad, but so what?

I You can violate the integrity of RAM, but is that all?

I How could you possibly use this as part of an attack to get arbitrary code execution?

NaCl Sandbox

Privileged sandbox for running native code from a web browser safely.

I Checks if the code is safe (i.e. doesn’t contain any weird syscalls or violate safety
properties)

I If so, it loads the chunks of instructions aligned on 32B boundaries

and eax , 0x000F ; Truncate address to 32 bits and mask to be 32−byte al igned
add rax , r15 ; Add r15 , the sandbox base address
jmp [rax] ; Jump to the loaded code snippet

Can we use Rowhammer to escape the sandbox?
(I mean obviously we can, but its more fun if you work out how to do it rather than me telling you…)

Variadic Instruction Sets

X86 is a dense instruction set

I Different instructions have different lengths

I Some have multiple length

20ea0 : 48 b8 0f 05 eb 0c f4 f4 f4 f4 movabs rax , 0xf4f4f4ff40ceb050f
20ea2 : 0f 05 sysca l l
20ea4 : eb 0c jmp 0xe

Last chance to guess the exploit?

Escaping NaCL

Code section is readable, so lets try and Rowhammer that and eax, 0x000F!
I Conveniently the code section is also readable (but not writable) by the loaded process so

we can tell if it has worked

So the attack:

1. Load a sequence of safe code that happens to be unsafe if you were to run it with a 1-bit
offset

2. Rowhammer the loading code so that NaCl checks the code with no-offset, but runs it with
an offset

3. Probably the program is gonna crash ’cos the loading code isn’t valid

4. Or we Rowhammer the Kernel’s memory and crash the entire computer

5. …or it works?

Luckily most unprivileged users are allowed to run crashy programs
millions of times without batting an eyelid
See this course.

Whoops!

Mark Seaborn and Halvar Flake have managed to Rowhammer their way to aribtrary code
execution.

I Guess it was security bug after all… B-)
I Also publish a similar but fiddlier Linux root privilege escallation attack using Rowhammer

Short term:
I clflush is banned in NaCl loaded code

I clflush is banned from non-root code (sometimes)

Those aren’t sustainable solutions…

Buy better RAM?

I But how do you tell?

…with error correction codes (ECC)?

I Expensive though, and slower (worth it for a server, not for a laptop…)

I Still a potential denial of service/vulnerability if you can corrupt multiple bits at once with
Rowhammer

…which refreshes faster?

I If you can’t Rowhammer faster than the refresh speed the attack doesn’t work

I But this slows down the whole computer.

…and which refreshes neigbouring rows more often?

I More recent DRAM standards do this…

I Again, slows things down.

Are we depressed yet?
Have you considered taking up pottery?

I Mud is not susceptible to Rowhammer or any of the
techniques covered in this course

I Mud will not make you sad (except when your bowls
collapse)

I You can make bowls and mugs and super cute pots!

Honestly, I cannot recommend it highly
enough.

Buckle up…

CPU Pipelines

In modern CPUs instructions take different times to complete…
So we pipeline them

I As one instruction is executing…

I The next can be being decoded…

I And the next can be being fetched.

Significant performance gains!

Branch Prediction
unsigned long factor ia l (unsigned long n) {

unsigned long result = 1 ;

while (n) [[l i k e l y]]
resu lt *= n − −;

return result
}

Conditionals can cause a problem however…

I Can’t load fetch the next multiply until we know if n > 0

I So pipeline stalls

Solution
Speculate that the loop is likely to be taken…

I CPU assumes it will be and fetches anyway

I If the assumption is wrong the CPU pipeline will have to be flushed before writeback…

I …but that should only happen once per call

I Speedup from removing the pipeline stall is bigger than the single pipeline flush

More performance gains!

I Especially with Symmetric Multi-Threading.

Watch the pointer closely…

Suppose we have two arrays: array1 and array2:
I What happens if we run this code?

i f (x < array1_size) [[l i k e l y]]
y = array2 [array1 [x]] ;

Which array is the pointer under?

y gets indexed by whatever is in array[x]
What about if x > array1_size?
i f (x < array1_size) [[l i k e l y]]

y = array2 [array1 [x]] ;

No, unfortunately that’s a lemon…

The if statement won’t succeed…
…but we said it was likely to succeed so the next line will be speculatively executed anyway

i f (x < array1_size) [[l i k e l y]]
y = array2 [array1 [x]] ;

And that would segfault anyway…

I And it would be mean to segfault on an instruction you never were going to execute.

I So we don’t… even if we’ve speculatively executed it.

As soon as the branch misprediction is detected start the rollback process

I Undo changes to registers

I Reset exception flags

I Cancel any memory writes

Jobs a good ’un, am I write ?

Just the writes?

i f (x < array1_size) [[l i k e l y]]
y = array2 [array1 [x]] ;

See the caches are a separate subsystem and managed by the MMU.

I When the second line executes the page of memory containing array2[array1[x]] will
be cached in preparation for the load into y

I And an exception signalled…

I That the CPU will tell the OS about when it hits writeback…

I …which will never actually happen because the if will turn out to be a branch misprediction

Everything is still good right?

Oh dear…

Suppose we guarantee that for every different value of x a different page of memory will be
cached?

i f (x < array1_size) [[l i k e l y]]
y = array2 [array1 [x]*4096];

(and that the branch will ALWAYS be mispredicted by the CPU).

Oh dear, Oh dear…

And then we were to time how long it took to access every page of memory…

Anyone want to guess what the value at array1[x] was?

I Which reading should have caused a segfault of…

Oh dear, Oh dear, Oh dear

Suppose this attack also worked not just with C but via Javascript…

i f (index < simpleByteArray . length) {
index = simpleByteArray [index | 0] ;
index = (((index * 4096)|0) & (32*1024*1024−1))|0;
localJunk ^= probeTable [index |0]|0;

}

So you can leak a byte of memory… big deal?

I But given a few hours you could leak all of memory

I On any system where you can host a webpage

Good job nothing useful is ever in memory, eh?
I Keys, personal data, certificates, passwords…

The Cloud

So how are we going to fix this?

This is the Spectre vulnerability, and is part of the Meltdown family of attacks:

Meltdown (CVE-2017-5754) melts down security barriers

Spectre (CVE-2017-5753 CVE-2017-5715) make speculative execution scary

Affects:

I All operating systems

I All CPUs with branch prediction

No, seriously please, how do we fix this?

We have a couple of ideas:

Disable branch prediction would require all new hardware, and have an enormous
performance impact

Disable caches would require all new hardware and have an enormous performance impact

Disable multithreading doable is software for most architectures, but would halve the
number of available cores. Also doesn’t actually fix the issue but makes
everything much harder to exploit

Which one do you think we’ve gone with?

Anyone’s computers feeling a bit slow?

When I was growing up everytime they made new computers they always felt lots faster…

I Anyone not really noticed this recently?

We do have other mitigations other than turning SMT off…

I but none of them are perfect, and all have an impact

I and turning multithreading off really does make this much, much harder to exploit

cat /sys/devices/system/cpu/ vu l n e r ab i l i t i e s /{meltdown , spectre*}

Mit igation : usercopy/swapgs barriers and __user pointer san i t i zat i on
Mitigation : Enhanced IBRS, IBPB : condit iona l , RSB f i l l i n g , PBRSB−eIBRS: SW sequence

And on your kernel commandline:

noibrs noibpb nopti nospectre_v2 nospectre_v1 l1tf=off
nospec_store_bypass_disable no_stf_barrier mds=off tsx=on
tsx_async_abort=off mitigations=off

It isn’t just you…

About a 25–30% performance penalty in the worst case
About a 10% in general usage

So in conclusion…

Computer hardware fundamentally broken

I RAM doesn’t work

I CPUs fundamentally broken

Software can give us a solution!

I But no one is happy about it

I More cost, slower performance

I And so no bonuses for you

My suggestion to all of you

People will always need clothes!
I Sewing is fun!

I It’s about an evenings work to make a hawaiian shirt!

I Sewing machines not vulnerable to any attacks in
this course
I (unless they’re really fancy…)

