
Databases

Joseph Hallett

February 19, 2024

What’s all this about?

When you write a program all your data disappears after the program ends
I Unless we save it somewhere
SQL Databases are a sensible choice for where to save your data
I Highly optimized storage of tabular data
I Fast and well understood query language
I Fault tolerant protocols

So what is a database?

Super fancy spreadsheet
I Each database will contain tables that store
data

I Data in tables can be queried using a
language called SQL

I Data in tables can be joined with data in
other tables to answer questions

Designing them so you don’t tie
yourself in knots is tricky!

So why not just use Spreadsheets?
I SeeMatt Parker’s excellent Stand-up
Maths video: UK Government loses data
because of Excel mistake.

https://youtu.be/zUp8pkoeMss

https://youtu.be/zUp8pkoeMss

Different types of database

Traditionally, the database would reside on a separate machine
I Space is expensive!
I If you wanted to use the database you had to connect to it
But nowadays space is cheap
I Local per app databases very common
If you need remote data access:
I Use a server-style database likeMariaDB or MySQL
Otherwise use a file-style database:
I …just use SQLite.

Should I use a database?

Am I being paid to store/process this data?
I Yes? Use a database.
I No? Use a spreadsheet (or a database)
Does the data need to be accessed remotely?
I Yes? Use a server-style database (MySQL/MariaDB)
I No? Use a file-style database (SQLite)
Am I just playing with data or is my data tiny (gigabytes in size)?
I Yes? Use a database or plain text data storage (i.e. CSV).
Is my data really big (petabytes in size)?
I Yes? Use a NoSQL database (beyond scope of this course)
Does my data contain recursive data structures (i.e. lists of lists of arbitrary length)
I Yes? Use Prolog or Datalog. (or abuse a database ;-))

Relational Modelling

Databases let us store data in tables!
I But how do you structure your data in a table?
I And can we draw pretty doodles based on them?

Relational modelling

Proviso!

Relational modelling is a tool for thinking about how to decompose relationships between
things into tables.
I People get fussy about the syntax

Please don’t!
I’ll try and show you various syntaxes you may encounter, but its just a tool
I Do whatever works for you
I So long as its clear it doesn’t matter
I The diagrams are for doodling ideas not final implementation

Things are nouns!
Here is a student! Students have a name and a
number!
I The student is the entity.
I The name and number are the attributes.

Student

Name

Number

More things are nouns!

Here is a unit! Units also! have a name and a
number!
I The unit is the entity.
I The name and number are the attributes.

Student

Name

Number

Unit

Name

Number

Don’t worry about names

There may be many examples of different
values that could be examples of units and
students… but don’t worry about that.

Student

Name

Number

Patrick McGoohan

6

Unit

Name

Number

Software Tools

COMS10012

Nouns can be related!

One student may take many units; and units
may have many students

Student

Name

Number

Unit

Name

Number

takes
1*

1*

Alternative notation
Some people prefer a graphical notation for
entity relationships called crow’s foot
I I prefer to write it explicitly
Don’t get too hung up on notation!
I And use a key if you’re ever asked in an
exam

I The point is to let you doodle notes
I Do whatever makes sense to you or the
people you work with

1

0

*

Schools are a thing!
There are things called schools:
I Schools have names
I Each unit belongs to exactly one school
I Each student belongs to exactly one school
Each school can have students and units its
responsible for
I But could also be empty!

Student

Name

Number

Unit

Name

Number

takes 1*1*

School

Name

belongs to

1

*

belongs to

1

*

Student

Name

Number

Unit

Name

Number

takes 1*1*

School

Name

belongs to

1

*

belongs to

1

*

What should I call a student?
Obviously their name would be polite…
…but what will happen if we were to open a
class on Gallifrey?

All 12!
This would rapidly get too confusing for
computers!
I (But not for people)
A key for an entity is the set of attributes
needed to uniquely refer to it.
I A candidate key is aminimal set of
attributes needed to uniquely refer to it.

I The primary key for an entity is the key we
use.

If a key contains multiple attributes its called a
composite key.
If a key is a meaningless ID column you added
just for the sake of having a key its called a
surrogate key.

Student

Name

*Number

Unit

Name

*Number

takes 1*1*

School

*Name

belongs to

1

*

belongs to

1

*

Student

Name

*Number

Unit

Name

*Number

takes 1*1*

School

*Name

belongs to

1

*

belongs to

1

*

When we want to turn it into tables
Every entity becomes a table
I Each table has a primary key
Every edge becomes a table
I Contents of these tables are the primary
keys of the two items being linked

I Attribute that refers to another key is
called a foreign key

School Membership
Student School
6970 School of Computer Science

School Units
Unit School
COMS10012 School of Computer Science

Student
Name Number
Joseph Hallett 6970

Unit
Name Number
Software Tools COMS10012

School
Name
School of Computer Science

Class Register
Student Unit
6970 COMS10012

Conclusions

1. Doodle entity relationship diagrams to sketch out database designs
2. Convert to databases by making everything a table
3. Don’t get hung up on notation

SQL Basics

We’ve got a database for storing data…
I It’d be nice to be able to acutally use it and make queries!
For that we need SQL:
I Structured Query Language

SQL

Query language for asking questions about databases from 1974
I Standardized in 1986 in the US and 1987 everywhere else
I Still the dominant language for queries today
Not a general purpose programming language
I Not Turing complete
I Weird English-like syntax

Standardized?

You would be so lucky!
I In theory, yes
I In practice, absolutely not
Every database engine has small differences…
I Some have quite big ones too!
Lots have differences in performance
I SQLite is good with strings, most others prefer numbers
Managing these differences used to be an entire degree/job in its own right!
I Now we just manage databases badly!
I’ll try and stick to SQLite’s syntax…

CREATE TABLE

Student

Name

*Number

Unit

Name

*Number

takes 1*1*

School

*Name

belongs to

1

*

belongs to

1

*

Lets build it in SQL

CREATE TABLE IF NOT EXISTS student (
name TEXT NOT NULL,
number TEXT NOT NULL,
PRIMARY KEY (number));

CREATE TABLE IF NOT EXISTS unit (
name TEXT NOT NULL,
number TEXT NOT NULL,
PRIMARY KEY (number));

CREATE TABLE IF NOT EXISTS school (
name TEXT NOT NULL,
PRIMARY KEY (name));

CREATE TABLE IF NOT EXISTS class_register (
student TEXT NOT NULL,
unit TEXT NOT NULL,
FOREIGN KEY (student) REFERENCES student(number),
FOREIGN KEY (unit) REFERENCES unit(name),
PRIMARY KEY (student, unit));

DROP TABLE

What about if we want to delete them?

DROP TABLE IF EXISTS class_register;
DROP TABLE IF EXISTS student;
DROP TABLE IF EXISTS unit;
DROP TABLE IF EXISTS school;

Syntax, syntax, syntax
If you go on the SQLite documentation page…
I …you can find syntax diagrams for all of SQL!
I https://www.sqlite.org/lang_createtable.html

https://www.sqlite.org/lang_createtable.html

Types

When creating the fields in our database we
made them all of type TEXT…
I What other types exist?

INTEGER whole numbers
REAL lossy decimals
BLOB binary data

(images/audio/files…)
VARCHAR(10) a string of 10 characters

TEXT any old text
BOOLEAN True or false

DATE Today
DATETIME Today at 2pm

But really types

Databases sometimes simplify these types
I SQLite makes the following tweaks… INTEGER whole numbers

REAL lossy decimals
BLOB binary data

(images/audio/files…)
VARCHAR(10) actually TEXT

TEXT any old text
BOOLEAN actually INTEGER

DATE actually TEXT
DATETIME actually TEXT

(others may exist… read the manual!)

Table constraints

In the earlier examples we marked some
columns as NOT NULL
I Others as PRIMARY KEY and others as

FOREIGN KEY…
I …what other constraints have we got
…but SQLite won’t actually enforce any of these
types or constraints unless you ask it to :-(
I Check out the STRICT keyword when
creating the table.

NOT NULL can’t be NULL
UNIQUE can’t be the same as another row
CHECK arbitrary checking (including it

conforms to a regular
expression)

PRIMARY KEY unique, not NULL and
(potentially) autogenerated

FOREIGN KEY (IGNORED BY MARIADB) other
key must exist

Can I add constraints later?

Yes with the ALTER TABLE statement
I But often easiest just to save the table
somewhere else

I Drop the table
I Reimport it

What about if we want to add data to a table?

INSERT INTO unit(name, number)
VALUES ("Software Tools", "COMS100012");

So far

We’ve introduced how to:
I CREATE TABLE
I DROP TABLE
I INSERT INTO

Next step: querying data!
I’m going to use a database from an old iTunes library for demo purposes
I Chinook database

SELECT

Basic command for selecting rows from a table
is SELECT

SELECT * FROM album
LIMIT 5;

AlbumId Title ArtistId
1 For Those About To Rock We Salute You 1
2 Balls to the Wall 2
3 Restless and Wild 2
4 Let There Be Rock 1
5 Big Ones 3

SELECT * FROM artist
LIMIT 5;

ArtistId Name
1 AC/DC
2 Accept
3 Aerosmith
4 Alanis Morissette
5 Alice In Chains

JOIN

Ideally we’d like those two tables combined into one…

SELECT *
FROM album
JOIN artist
ON album.artistid = artist.artistid
LIMIT 5;

AlbumId Title ArtistId ArtistId Name
1 For Those About To Rock We Salute You 1 1 AC/DC
2 Balls to the Wall 2 2 Accept
3 Restless and Wild 2 2 Accept
4 Let There Be Rock 1 1 AC/DC
5 Big Ones 3 3 Aerosmith

Reducing the columns…

Clearly there are too many columns here… lets only select the ones we need

SELECT album.title, artist.name
FROM album
JOIN artist
ON album.artistid = artist.artistid
LIMIT 5;

Title Name
For Those About To Rock We Salute You AC/DC
Balls to the Wall Accept
Restless and Wild Accept
Let There Be Rock AC/DC
Big Ones Aerosmith

Renaming columns

Title and Name aren’t particularly meaningful without context
I Lets name them something sensible

SELECT album.title AS album,
artist.name AS artist

FROM album
JOIN artist
ON album.artistid = artist.artistid
LIMIT 5;

album artist
For Those About To Rock We Salute You AC/DC
Balls to the Wall Accept
Restless and Wild Accept
Let There Be Rock AC/DC
Big Ones Aerosmith

I’m feeling rocky

I want to listen to something a bit rocky…
I Lets filter all the albums to the ones that have Rock in the title

SELECT album.title AS album,
artist.name AS artist

FROM album
JOIN artist
ON album.artistid = artist.artistid
WHERE album LIKE '%Rock%'
LIMIT 5;

album artist
For Those About To Rock We Salute You AC/DC
Let There Be Rock AC/DC
Deep Purple In Rock Deep Purple
Rock In Rio [CD1] Iron Maiden
Rock In Rio [CD2] Iron Maiden

Who rocks?

So who has put out an album with Rock in it?

SELECT artist.name AS artist
FROM album
JOIN artist
ON album.artistid = artist.artistid
WHERE album.title LIKE '%Rock%'
LIMIT 5;

artist
AC/DC
AC/DC
Deep Purple
Iron Maiden
Iron Maiden

SELECT DISTINCT artist.name AS artist
FROM album
JOIN artist
ON album.artistid = artist.artistid
WHERE album.title LIKE '%Rock%'
LIMIT 5;

artist
AC/DC
Deep Purple
Iron Maiden
The Cult
The Rolling Stones

How many rock albums has each artist put out?

Lets group by artist and count the albums!

SELECT artist.name AS artist,
COUNT(album.title) as albums

FROM album
JOIN artist
ON album.artistid = artist.artistid
WHERE album.title LIKE '%Rock%'
GROUP BY artist
LIMIT 5;

artist albums
AC/DC 2
Deep Purple 1
Iron Maiden 2
The Cult 1
The Rolling Stones 1

Really we want this list ordered…

Lets group by artist and count the albums…
I And order it by album count!

SELECT artist.name AS artist,
COUNT(album.title) as albums

FROM album
JOIN artist
ON album.artistid = artist.artistid
WHERE album.title LIKE '%Rock%'
GROUP BY artist
ORDER BY albums DESC
LIMIT 5;

artist albums
Iron Maiden 2
AC/DC 2
The Rolling Stones 1
The Cult 1
Deep Purple 1

Basics of SQL

So thats the basics of SQL!
I You can do a bunchmore things with SQL SELECT statements…
I …you can pick them up as you write queries.
I …most SQL engines have a bunch more counting and query functions too

Go read the documentation!

Normal Forms

Database theory!
I So far we’ve discussed how to doodle database designs…
I We’ve discussed how to create tables in SQL

How do we design tables that are easy to use?

Lets start with our records database again…

We could store our data as follows:
Artist Albums
The Beatles Yellow Submarine, White Album, Rubber Soul
Milk Can Make It Sweet
Dresden Dolls Yes Virginia, No Virginia, The Dresden Dolls

Please, no.

This is a terrible idea
I Yes we have one big table which seems neater
I But its much harder to do anything actually with
For example:
I How many albums does each artist have?
I Change all of Prince’s albums after 1993 to being by a Love Symbol
I How many artists have an album with the same name?

Normal forms

Normal forms prevent this sort of insanity
I Using them requires discipline, and rememebering rules…
I But is worth it for your sanity in the short to medium term

First Normal Form

Each column shall contain one (and only one) value
Each row says describesmultiple albums per artist…

Artist Albums
The Beatles Yellow Submarine, White Album, Rubber Soul
Milk Can Make It Sweet
Dresden Dolls Yes Virginia, No Virginia, The Dresden Dolls

First Normal Form

Lets fix that…
Artist Album
The Beatles Yellow Submarine
The Beatles White Album
The Beatles Rubber Soul
Milk Can Make It Sweet
Dresden Dolls Yes Virginia
Dresden Dolls No Virginia
Dresden Dolls The Dresden Dolls

Lets add some more data to our table

Artist Album Year Prime Minister
The Beatles Yellow Submarine 1969 Harold Wilson
The Beatles White Album 1968 Harold Wilson
The Beatles Rubber Soul 1965 Harold Wilson
Milk Can Make It Sweet 1999 Tony Blair
Dresden Dolls Yes Virginia 2006 Tony Blair
Dresden Dolls No Virginia 2008 Gordon Brown
Dresden Dolls The Dresden Dolls 2003 Tony Blair

Second Normal Form

Every non-key attributue is fully dependent on the key
In this case the key is Artist, Album
I And arguably year too if you’re gonna pull a Taylor Swift and rerelease all your albums…
Is Prime Minister dependent on the key?
I No. Put it in a different table.

Now it looks like

Artist Album Year
The Beatles Yellow Submarine 1969
The Beatles White Album 1968
The Beatles Rubber Soul 1965
Milk Can Make It Sweet 1999
Dresden Dolls Yes Virginia 2006
Dresden Dolls No Virginia 2008
Dresden Dolls The Dresden Dolls 2003

Year Prime Minister
1969 Harold Wilson
1968 Harold Wilson
1965 Harold Wilson
1999 Tony Blair
2006 Tony Blair
2008 Gordon Brown
2003 Tony Blair

Third Normal Form

Every non-key attribute must provide a fact about the key, the whole key and nothing but
the key; so help me Codd.

Lets add some extra information to our table of Prime Ministers…
Year Prime Minister Birthday
1969 Harold Wilson 1916-03-11
1968 Harold Wilson 1916-03-11
1965 Harold Wilson 1916-03-11
1999 Tony Blair 1953-05-06
2003 Tony Blair 1953-05-06
2006 Tony Blair 1953-05-06
2008 Gordon Brown 1951-02-20

Our key is (Year, Prime Minister); Birthday depends on Prime Minister.
I So every non-key depends on the key…
I So 2NF
But not 3NF as Birthday doesn’t tell you a fact about the whole key… just the Prime Minister.

So split it up!

Year Prime Minister
1969 Harold Wilson
1968 Harold Wilson
1965 Harold Wilson
1999 Tony Blair
2003 Tony Blair
2006 Tony Blair
2008 Gordon Brown

Prime Minister Birthday
Harold Wilson 1916-03-11
Tony Blair 1953-05-06
Gordon Brown 1951-02-20

Why is this better?
I Now if we need to alter the birthday of a
PM (or any other fact about that key)…

I …then we only need to alter it in one place.

Other normal forms…

Boyce-Codd Normal Form
A slightly stronger form of 3NF…
I Sometimes called 3.5th Normal Form
Every possible candidate key for a table is also in 3NF.
I Split a 3NF table into tables with single candidate keys to get 3.5NF.

4th Normal Form
If multiple attributes in a table depend on the same key,
I Then those attributes should be dependant too
I Otherwise split them into separate tables…

5th Normal Form
It’s in 4th normal form and you can’t split it into more separate tables.

This is all getting a bit mathsy…

You can look up formal definitions for each of the normal forms
I (and you should)
But so long as you keep things as separate as possible, you’ll usually hit at least 3NF by accident.
I …and practically speaking your probably good then
I Getting it to 5NF doesmake things more flexible in the long run…
I But a 3.5NF database is often good enough.
Ultimately design is subjective (somewhat).
I …but mathematical proof of flexibility is good right?

Codd’s Law
Every non-key attribute must provide a fact about the key,
the whole key and nothing but the key; so help me Codd.

Ted Codd

Lets get back to SQL

So far we’ve introduced basic SQL
I How to create tables
I How to add and delete data
I How to run basic queries

Lets go further!
I More features, more function
I Other joins
I NULL

NULL is nothing

There is a special value in SQL to represent missing data: NULL.
I But they’re pretty much always a bad idea
I The logic for comparing them is pretty whacky

NULL = NULL?

Lets say we have a database with the
following table:

Person Fruit
Joseph Lime
Matt Apple
Manolis

Lets find everyone who we know what their favourite fruit is!

SELECT * FROM fruit WHERE fruit <> NULL;

Err…, lets try the opposite?

SELECT * FROM fruit WHERE fruit = NULL;

Err what?

SELECT * FROM fruit WHERE fruit LIKE '%';

Person Fruit
Joseph Lime
Matt Apple

So…

SELECT * FROM fruit WHERE fruit NOT LIKE '%';

NULL is weird…

Because NULLmeans attribute missing…
I The results of comparing with it are just plain stupid somewhat unexpected
The simple solution is to declare everything as NOT NULL
I And use a higher normal form (5NF) then you’ll find they almost entirely disappear
Otherwise you have to memorise a bunch of stupid special comparators

SELECT * FROM fruit WHERE fruit IS NULL;

Person Fruit
Manolis

SELECT * FROM fruit WHERE fruit IS NOT NULL;

Person Fruit
Joseph Lime
Matt Apple

Tricky joins

Clearly testing for equality when NULL is problematic.
I So what happens when you want to join two tables together with NULL’s in them

Person Fruit
Joseph Lime
Matt Apple
Manolis

Fruit Dish
Apple Apple crumble
Banana Banana split
Cherry
Lime Daiquiri

What’s my favourite food?

So what might make a nice dish for each of your lecturers?
I (A NATURAL JOIN is like a regular JOIN but assumes same named columns ought to be
equal).

Person Fruit Dish
Joseph Lime Daiquiri
Matt Apple Apple crumble

But what about poorManolis? How do we get him to appear in our table?

LEFT and RIGHT JOIN

When doing our previous JOIN we wanted only rows that matched…
I Technically called an INNER JOIN…
Sometimes we’re okay with the database sticking NULL in if we want to keep columns where a
join can’t be made…

SELECT person, fruit.fruit, dish
FROM fruit
LEFT JOIN recipes
ON fruit.fruit = recipes.fruit;

Person Fruit Dish
Joseph Lime Daiquiri
Matt Apple Apple crumble
Manolis

RIGHT JOIN
A RIGHT JOIN is like a left join but the other way round…

SELECT fruit.fruit, dish, person
FROM fruit
RIGHT JOIN recipes
ON fruit.fruit = recipes.fruit;

Fruit Dish Person
Lime Daiquiri Joseph
Apple Apple crumble Matt

Banana split

Where has the Banana gone?!

SELECT recipes.fruit, dish, person
FROM fruit
RIGHT JOIN recipes
ON fruit.fruit = recipes.fruit;

Fruit Dish Person
Lime Daiquiri Joseph
Apple Apple crumble Matt
Banana Banana split
Cherry

(Or just NATURAL JOIN and it’ll usually take care of it…)

SELECT fruit, dish, person
FROM fruit
RIGHT NATURAL JOIN recipes;

Fruit Dish Person
Lime Daiquiri Joseph
Apple Apple crumble Matt
Banana Banana split
Cherry

One more JOIN!

What if we want to do a LEFT and a RIGHT JOIN at the same time?

SELECT *
FROM fruit
FULL OUTER NATURAL JOIN recipes;

Person Fruit Dish
Joseph Lime Daiquiri
Matt Apple Apple crumble
Manolis

Banana Banana split
Cherry

What about statistic functions?

In the last lecture we introduced COUNT as a way of counting how many things exist?
I How may different fruits are in the outer joined table?

SELECT *
FROM fruit
FULL OUTER NATURAL JOIN recipes;

Person Fruit Dish
Joseph Lime Daiquiri
Matt Apple Apple crumble
Manolis

Banana Banana split
Cherry

SELECT COUNT(fruit)
FROM fruit
FULL OUTER NATURAL JOIN recipes

COUNT(fruit)
4

…So it looks like COUNT ignores NULL

Other statistics…

Lets rank fruits!
Fruit Stars
Apple 0
Banana 4
Cherry
Lime 5

SELECT AVG(stars) AS Average FROM ranking;

Average
3.0

SELECT SUM(stars)/COUNT(fruit) AS Average
FROM ranking;

Average
2

Remember computers are awful
I Multiply count by 1.0 to ”fix”?
I Also number of stars is ordinal data so the
mean shouldn’t be used anyway…

What about standard deviation?

The standard deviation is how far something deviates on average from themean.

SELECT SQRT(AVG(Deviation)) AS STDDEV
FROM (

SELECT Fruit, Stars, Mean,
(Stars-Mean)*(Stars-Mean) AS Deviation

FROM ranking JOIN (
SELECT AVG(stars) AS Mean
FROM ranking

)
WHERE stars IS NOT NULL

);

STDDEV
2.16024689946929

You can nest queries inside one another (subqueries!)
I This is a recipe for making your SQL slow
I Maybe just use SQL for data retrieval and leave complex stats to statistical programming
languges?

So thats SQL!

Tips for using it?
I Don’t overcomplicate things!
I Normal forms make things simpler!
I Avoid NULL like the plague

JDBC

In the real world we rarely want to access a database in its own right
I Rather it is used within a programming language as part of a program
Different languages have different APIs for different databases…
I …but Java has the JDBC for almost all of them

JDBC

I Library is in java.sql and javax.sql packages
I Wraps all of a databases functionality into something that looks a lot like Oracle SQL.
I Supports prepared statements (you want to use these)

What does it look like?

import java.sql.*;

try (final Connection conn = DriverManager.getConnection("jdbc:sqlite:database.db")) {
conn.createStatement()

.executeQuery("CREATE TABLE users(username TEXT PRIMARY KEY, password TEXT)");
} catch (final SQLException err) {

System.out.println(err);
}

java.sql.SQLException: No suitable driver found for jdbc:sqlite:database.db

Lets add some suitable users…

import java.sql.*;
import java.util.*;

final var users = new HashMap<String, String>();
users.put("Joseph", "password");
users.put("Matt", "password1");
users.put("Manolis", "12345");

try (final Connection conn = DriverManager.getConnection("jdbc:sqlite:database.db")) {
conn.createStatement().executeUpdate("DELETE FROM users");
final var statement = conn.prepareStatement("INSERT INTO users VALUES(?, ?)");
for (final var user : users.keySet()) {

statement.setString(1, user);
statement.setString(2, users.get(user));
statement.executeUpdate();

}
} catch (final SQLException err) {

System.out.println(err);
}

And list them back out…

import java.sql.*;
import java.util.*;

System.out.println("|User | Password");
try (final Connection conn = DriverManager.getConnection("jdbc:sqlite:database.db")) {

final var results = conn.createStatement()
.executeQuery("SELECT * FROM users");

while (results.next())
System.out.println("| "+results.getString(1)

+" | "+results.getString(2));
} catch (final SQLException err) {

System.out.println(err);
}

Matt password1
Joseph password
Manolis 12345

Why not this…

When adding all the users we used a PreparedStatement to add all the users.

final var statement = conn.prepareStatement("INSERT INTO users VALUES(?, ?)");
for (final var user : users.keySet()) {

statement.setString(1, user);
statement.setString(2, users.get(user));
statement.executeUpdate();

}

Wouldn’t this be easier?

for (final var user : users.keySet())
conn.createStatement()

.executeUpdate("INSERT INTO users "+"VALUES ('"+user+"', '"+users.get(user)+"')");

SQL Injection

This leads to a horrible vulnerability called an injection attack
I You can do something similar with shellscript too ;-)
I Search for Shellshock vulnerability if you’re interested…
What a prepared statement does is ensure that the things you add are what you say they are
Suppose you do the something similar for the login code:

SELECT username FROM users
WHERE username = "Joseph"
AND password = "password";

username
Joseph

Suppose the username and password are taken from a website login form…
I What happens if I try and login with a password of:

" OR 1 OR password = "heheh

Bad things

With a prepared statement:

SELECT username FROM users
WHERE username = "Joseph"
AND password = """ OR 1 OR password = ""heheh";

Without a prepared statement:

SELECT username FROM users
WHERE username = "Joseph"
AND password = "" OR 1 OR password = "heheh";

username
Matt
Joseph
Manolis

ALWAYS USE PREPARED STATEMENTS
The compiler will even spew warnings and errors about this nowadays…

Transactions

Another cool thing that JDBC makes easy are transactions…
Suppose you want to do a bunch of additions and updates to a database…
I What happens if something goes wrong in the middle?
You could go and manually roll back all the new data you added and changes you made…
I Sounds tedious
I Lets automate it!

Transaction workflow

1. Start a new transaction
2. Do your work
3. Commit to it when done
4. Rollback if an error occurs

And in Java please?

import java.sql.*;
import java.util.*;

try (final Connection conn = DriverManager.getConnection("jdbc:sqlite:database.db")) {
conn.setAutoCommit(false);
final var save = conn.setSavepoint();
try {

conn.createStatement() .executeQuery("INSERT INTO users VALUES ('Alice', 'pa55w0rd')");
conn.createStatement() .executeQuery("INSERT INTO users VALUES ('Bob', 'Pa55w0Rd7')");
if (true) throw new Exception("Whoops!");
conn.createStatement() .executeQuery("INSERT INTO users VALUES ('Eve', 'backd00r')");
conn.commit();

} catch (final Exception err) {
conn.rollback(save);

} finally {
conn.setAutoCommit(true);

}
} catch (final SQLException err) {

System.out.println(err);
}

Now if we query users…

SELECT * FROM users;

username password
Matt password1
Joseph password
Manolis 12345

username password
Matt password1
Joseph password
Manolis 12345

Our table remains unaltered… the whole
transaction was rolled back.

(Oh, and BTW SQLite also can do transactions
in SQL)

Conclusions

JDBC lets you access SQL from Java
I Make sure you load the right driver
I Catch SQLExceptions
I Use prepared statements and transactions to prevent errors
I And an ORM like Hibernate if you like.

IMPORTANT NOTE
Please don’t actually implement password storage like we did in the lecture…
I Go speak to someone in the cyber or crypto groups first…
I Or read NIST 800-63 first
I will write papers about you if you do ;-)

Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve and Awais Rashid. “Do this! Do that!,
And nothing will happen” Do specifications lead to securely stored passwords? 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 2021.

