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Why we need JavaScript?
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Why we need JavaScript?

• JavaScript is a high-level language like Python and Java

• JavaScript, HTML and CSS are the primary languages 
used to build a website’s front-end applications

• All browsers include a JavaScript engine to execute 
code

• JavaScript can even be used for server-side operations 
with node.js
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Main attributes and properties

• JavaScript is a dynamically typed language

• Is a weakly typed language and prototype-based (objects)

• It is a multi-paradigm language, supporting functional 
and event-driven behavior

• It has an application programming interface (API), for 
handling text, arrays and HTML Document Object Model 
(DOM)

• JavaScript does not include input/output (I/O) module for 
networking, storage or any graphics interface
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Internal JavaScript
placed in head area of a document

<script>
// code block

</script>
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How to Add JavaScript into an HTML Document

External JavaScript
async: scripts with the async 
attribute are executed 
asynchronously
defer: the script is downloaded in 

parallel while parsing the page

<script src = "scriptfile.js" 
async>
</script>

Inline JavaScript
<button 
onclick="createParagraph()
"CLick!!</button>



Just-in-time compiler (JIT)
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JavaScript communication with user examples
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• console.log("Hello world!");

• window.console.error(“Error");

• window.alert("Hello world!"); 

//referencing the global object directly

• alert("Hello world!"); 

//shorthand way 

• window.prompt("Are you feeling ok");



JavaScript communication with user examples
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JavaScript engines

Every browser starts two processes for every web page

• Rendering engine: it is responsible to display the web page. 
Parses the HTML and CSS and displays the content on the 
screen

• JavaScript engine: This is where JavaScript code gets 
executed 

JavaScript is interpreted,  not a compiled language. Modern 
browsers use a technology called Just-In-Time (JIT) compilation 
that compiles the code to an executable bytecode. 
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Document Object Model (DOM) tree structure
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Can you count the elements in your structure?



DOM Manipulation in JavaScript
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Navigator 

(user agent)

Window

(tabs, 

Window.innerWidth

Window.innerHeight

Main document

(DOM, HTML) 

<!DOCTYPE html>

<html>

  <head>

  <title>JavaScript Demo page</title>

  </head>

<body>

<h2>This is an example of a Demo page with JavaScript</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

"The title of this document is: " + document.title;

</script>

</body>

</html>



JavaScript HTML DOM EventListener
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How to Make JavaScript Execute After HTML Load onload Event

If we use JavaScript to handle a Document Object Model (DOM) then our code 
executes after HTML (blocked code until OK!)

14



Execute JavaScript: parser-blocking scripts 

(synchronous)
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Execute JavaScript: parser-blocking scripts 
(synchronous)



Asynchronous JavaScript
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We can run function in parallel Asynchronously vs Synchronous coding:
is executed line by line  (JavaScript has  single thread execution)

each line waits for previous line to finish

long time operation



Asynchronous JavaScript
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Variable Names 
• JavaScript variable names cannot include any 

Unicode character

• First character can be any of a-z, A-Z or (_) or $

let $4 = 1; → Block
let _4 = 10;
var $_$ = "money"; → Function
var I_AM_HUNGRY = true;
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typeof Operator

We can use the typeof operator to identify 
the data type of a Javascript variable:

let x= 10;
console.log(typeof x);
>number
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JavaScript Arithmetic Operators Demo
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Declare: 

let abc = ‘hi 
all’; → The 
same
let def = ”hi
all”;

\→ escape point 

let “I\’m feeling 
lucky”;

concatenate them using +

let one = 
“Hello”;
let two = 
“world!!!”;
let concatenation 
= one + two
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String in JavaScript

TELETYPE TEXT



23

String methods in JavaScript

let myName = 'Manolis
> myName.length;
7
> myName[0];
'M’
> myName[myName.length-1];
's’
> myName.slice(0,3);
'Man'

> myName.indexOf('lis');
4
> myName.slice(3);
'olis’
> myName.toLowerCase();
'manolis'
> myName.toUpperCase();
'MANOLIS’
> 
myName.replace('lis','s');
'Manos'



Arrays in JavaScript
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Arrays are objects which can hold multiple values: 

> let numbers = ['one', 'two', 'three'];
undefined
> numbers
[ 'one', 'two', 'three' ]
> let values = [1, 2, 3, 4, 5, 6, 10];
undefined
> let variety = ['one', 7896, [0, 1, 2]];
undefined
> variety
[ 'one', 7896, [ 0, 1, 2 ] ]



JavaScript is a scripting language utilized within an HTML document, to add functionality to the document or if you 
prefer to make a document dynamic.

With JavaScript, what we add complex features on web pages, 

specifically, we can:

• Dynamically update html page content 

• Control multimedia\images content of a page

• Control, change text
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JavaScript and html
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Trigger a click event JavaScript– Button example HTML



Every function contains a set of instructions in a logical sequence so that a specific result is always achieved. For 
function in JavaScript:

• Every function must have a specific and unique name (e.g., myFunction)

• Same rules for naming variables apply to function names

• Word "function" must precede the name of a function (e.g., function myFunction).

• Each function name is followed by a pair of parentheses (e.g., function myFunction()).

• The set of instructions for each function is contained within curly braces { and } (e.g., function myFunction() { . . . })

• The function parameters may be included within the parentheses, and there may be 0, 1, or more parameters

• Each function is called by its name (e.g., myFunction())

• Instructions within a function are executed when the function is called by its name

• Each function could be called multiple times within a script

• An HTML document may contain more than one function

• All the functions are contained within the <script> and </script> tags or wherever else code is inserted
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JavaScript Functions

Example:
 <script>
            function Hello() {
                alert(“Welcome!");

}
</script>

General syntax: 
function FunctionName([param[, param[, ... param]]]) 
{           
...
}
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JavaScript Conditions



for (Initial counter value; Condition; Counting step) {

// code block to be executed

}

Example: 

while (condition) {

// code block to be executed

}

Example:
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JavaScript Loops



Cookies are small text files that are stored on the computer and contain data in the form of 
name=value pairs. For example: visitor=vist123.

To write (or store) and read cookies on the machine, the command used is document.cookie.
document.cookie = "cookieName=cookieValue";

Overall, the cookie is stored as a string, and any additional parameters you can pass are 
separated by a question mark (;).

Example: document.cookie = "userid=Fe80gRCCijyH4mgdO; expires=Sun, 13 Jun 2021 20:31:59 
GMT; path=/“

This is a JavaScript function to create a cookie:

Cookies store user/visitor information

When a browser requests a web page from the
 server, page cookies are added to that request
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JavaScript Cookies
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• Tracking
• Profiling
• Data Collection
• Third-Party vs First-Party Cookies

Privacy concerns

How to protect

• Browser Privacy Settings: private 
browsing, cookie blocking, and third-
party cookie restrictions

• Cookie Blockers, extensions or browsers
• Anonymization with Tor (not 100% safe) 
• Use of Tails, a portable operating system 

that protects against surveillance and 
hides your identity



The JavaScript language has been designed on an object-oriented basis. With OOP 
a developer can:

• Create their own objects and organize better the code by making it more 
flexible and maintainable

• Use the pre-made built-in objects provided by JavaScript (JSON, Date, Math)

• We use OOP to model or better describe real-world examples

• The objects can contain data or methods. With objects we incorporate the 
data and their behavior into a block of code

• Objects can interact with one another

• We can use an API methods to access and communicate with the object

32

Object-Oriented Programming With JavaScript ( OOP)
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JSON (JavaScript Object Notation) is used for storing and transmitting data, primarily in web applications.

• JSON objects share many similarities with Array objects.

• Data is recorded in the format key:value.

Example: 

The date object is used for managing dates and times

Example: 

34

JavaScript Built-in objects



In JavaScript, anything stored in a variable is an object. To use an object, we first need to 

create an instance of that object.

Creating an object is done using the new operator -> var d = new Date();

Each instance (or object, as we will call it) has:

• Properties or characteristics (features, properties, or fields)

• Functions or methods

• Ability to handle events

An object can have sub objects (child objects) -> window.document

To add an event handler, we use the method -> addEventListener("eventname", 

functionname);
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Objects and Instances
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JavaScript Custom Objects with functions



AJAX (Asynchronous JavaScript And XML): 

• It can communicate with remote web servers in an asynchronous manner

• It requests data from web servers dynamically 
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Asynchronous JavaScript and AJAX
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Asynchronous JavaScript and AJAX



https://developer.mozilla.org/en-US/docs/Learn/JavaScript

JavaScript: The Definitive Guide, Author: David Flanagan
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Suggested resources for further reading

https://developer.mozilla.org/en-US/docs/Learn/JavaScript
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JS editor VS code
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JS editor VS code
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JS editor VS code



How to organize your project folder and file structure

43

19 March 2024

<link rel="stylesheet" type="text/css" 

href="css/mycss.css">

<img src="img/myimage.jpg"></img>

<script src="js/myscript.js"></script>
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JS editor VS code

Thank you for watching my JavaScript 

presentation
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Have any questions? 
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