
JavaScript

An introduction to JavaScript Programming

19 March 2024

1Manolis Samanis

Why we need JavaScript?

2

Why we need JavaScript?

• JavaScript is a high-level language like Python and Java

• JavaScript, HTML and CSS are the primary languages
used to build a website’s front-end applications

• All browsers include a JavaScript engine to execute
code

• JavaScript can even be used for server-side operations
with node.js

3

Main attributes and properties

• JavaScript is a dynamically typed language

• Is a weakly typed language and prototype-based (objects)

• It is a multi-paradigm language, supporting functional
and event-driven behavior

• It has an application programming interface (API), for
handling text, arrays and HTML Document Object Model
(DOM)

• JavaScript does not include input/output (I/O) module for
networking, storage or any graphics interface

4

Internal JavaScript
placed in head area of a document

<script>
// code block

</script>

5

How to Add JavaScript into an HTML Document

External JavaScript
async: scripts with the async
attribute are executed
asynchronously
defer: the script is downloaded in

parallel while parsing the page

<script src = "scriptfile.js"
async>
</script>

Inline JavaScript
<button
onclick="createParagraph()
"CLick!!</button>

Just-in-time compiler (JIT)

6

JavaScript communication with user examples

7

19 March 2024

• console.log("Hello world!");

• window.console.error(“Error");

• window.alert("Hello world!");

//referencing the global object directly

• alert("Hello world!");

//shorthand way

• window.prompt("Are you feeling ok");

JavaScript communication with user examples

8

19 March 2024

JavaScript engines

Every browser starts two processes for every web page

• Rendering engine: it is responsible to display the web page.
Parses the HTML and CSS and displays the content on the
screen

• JavaScript engine: This is where JavaScript code gets
executed

JavaScript is interpreted, not a compiled language. Modern
browsers use a technology called Just-In-Time (JIT) compilation
that compiles the code to an executable bytecode.

9

Document Object Model (DOM) tree structure

10

19 March 2024

11

19 March 2024

Can you count the elements in your structure?

DOM Manipulation in JavaScript

12

19 March 2024

Navigator

(user agent)

Window

(tabs,

Window.innerWidth

Window.innerHeight

Main document

(DOM, HTML)

<!DOCTYPE html>

<html>

 <head>

 <title>JavaScript Demo page</title>

 </head>

<body>

<h2>This is an example of a Demo page with JavaScript</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

"The title of this document is: " + document.title;

</script>

</body>

</html>

JavaScript HTML DOM EventListener

13

19 March 2024

How to Make JavaScript Execute After HTML Load onload Event

If we use JavaScript to handle a Document Object Model (DOM) then our code
executes after HTML (blocked code until OK!)

14

Execute JavaScript: parser-blocking scripts

(synchronous)

15

16

Execute JavaScript: parser-blocking scripts
(synchronous)

Asynchronous JavaScript

17

We can run function in parallel Asynchronously vs Synchronous coding:
is executed line by line (JavaScript has single thread execution)

each line waits for previous line to finish

long time operation

Asynchronous JavaScript

18

Variable Names
• JavaScript variable names cannot include any

Unicode character

• First character can be any of a-z, A-Z or (_) or $

let $4 = 1; → Block
let _4 = 10;
var $_$ = "money"; → Function
var I_AM_HUNGRY = true;

19

typeof Operator

We can use the typeof operator to identify
the data type of a Javascript variable:

let x= 10;
console.log(typeof x);
>number

20

JavaScript Arithmetic Operators Demo

21

Declare:

let abc = ‘hi
all’; → The
same
let def = ”hi
all”;

\→ escape point

let “I\’m feeling
lucky”;

concatenate them using +

let one =
“Hello”;
let two =
“world!!!”;
let concatenation
= one + two

22

String in JavaScript

TELETYPE TEXT

23

String methods in JavaScript

let myName = 'Manolis
> myName.length;
7
> myName[0];
'M’
> myName[myName.length-1];
's’
> myName.slice(0,3);
'Man'

> myName.indexOf('lis');
4
> myName.slice(3);
'olis’
> myName.toLowerCase();
'manolis'
> myName.toUpperCase();
'MANOLIS’
>
myName.replace('lis','s');
'Manos'

Arrays in JavaScript

24

Arrays are objects which can hold multiple values:

> let numbers = ['one', 'two', 'three'];
undefined
> numbers
['one', 'two', 'three']
> let values = [1, 2, 3, 4, 5, 6, 10];
undefined
> let variety = ['one', 7896, [0, 1, 2]];
undefined
> variety
['one', 7896, [0, 1, 2]]

JavaScript is a scripting language utilized within an HTML document, to add functionality to the document or if you
prefer to make a document dynamic.

With JavaScript, what we add complex features on web pages,

specifically, we can:

• Dynamically update html page content

• Control multimedia\images content of a page

• Control, change text

25

JavaScript and html

26

Trigger a click event JavaScript– Button example HTML

Every function contains a set of instructions in a logical sequence so that a specific result is always achieved. For
function in JavaScript:

• Every function must have a specific and unique name (e.g., myFunction)

• Same rules for naming variables apply to function names

• Word "function" must precede the name of a function (e.g., function myFunction).

• Each function name is followed by a pair of parentheses (e.g., function myFunction()).

• The set of instructions for each function is contained within curly braces { and } (e.g., function myFunction() { . . . })

• The function parameters may be included within the parentheses, and there may be 0, 1, or more parameters

• Each function is called by its name (e.g., myFunction())

• Instructions within a function are executed when the function is called by its name

• Each function could be called multiple times within a script

• An HTML document may contain more than one function

• All the functions are contained within the <script> and </script> tags or wherever else code is inserted

27

JavaScript Functions

Example:
 <script>
 function Hello() {
 alert(“Welcome!");

}
</script>

General syntax:
function FunctionName([param[, param[, ... param]]])
{
...
}

28

JavaScript Conditions

for (Initial counter value; Condition; Counting step) {

// code block to be executed

}

Example:

while (condition) {

// code block to be executed

}

Example:

29

JavaScript Loops

Cookies are small text files that are stored on the computer and contain data in the form of
name=value pairs. For example: visitor=vist123.

To write (or store) and read cookies on the machine, the command used is document.cookie.
document.cookie = "cookieName=cookieValue";

Overall, the cookie is stored as a string, and any additional parameters you can pass are
separated by a question mark (;).

Example: document.cookie = "userid=Fe80gRCCijyH4mgdO; expires=Sun, 13 Jun 2021 20:31:59
GMT; path=/“

This is a JavaScript function to create a cookie:

Cookies store user/visitor information

When a browser requests a web page from the
 server, page cookies are added to that request

30

JavaScript Cookies

31

• Tracking
• Profiling
• Data Collection
• Third-Party vs First-Party Cookies

Privacy concerns

How to protect

• Browser Privacy Settings: private
browsing, cookie blocking, and third-
party cookie restrictions

• Cookie Blockers, extensions or browsers
• Anonymization with Tor (not 100% safe)
• Use of Tails, a portable operating system

that protects against surveillance and
hides your identity

The JavaScript language has been designed on an object-oriented basis. With OOP
a developer can:

• Create their own objects and organize better the code by making it more
flexible and maintainable

• Use the pre-made built-in objects provided by JavaScript (JSON, Date, Math)

• We use OOP to model or better describe real-world examples

• The objects can contain data or methods. With objects we incorporate the
data and their behavior into a block of code

• Objects can interact with one another

• We can use an API methods to access and communicate with the object

32

Object-Oriented Programming With JavaScript (OOP)

33

JSON (JavaScript Object Notation) is used for storing and transmitting data, primarily in web applications.

• JSON objects share many similarities with Array objects.

• Data is recorded in the format key:value.

Example:

The date object is used for managing dates and times

Example:

34

JavaScript Built-in objects

In JavaScript, anything stored in a variable is an object. To use an object, we first need to

create an instance of that object.

Creating an object is done using the new operator -> var d = new Date();

Each instance (or object, as we will call it) has:

• Properties or characteristics (features, properties, or fields)

• Functions or methods

• Ability to handle events

An object can have sub objects (child objects) -> window.document

To add an event handler, we use the method -> addEventListener("eventname",

functionname);

35

Objects and Instances

36

JavaScript Custom Objects with functions

AJAX (Asynchronous JavaScript And XML):

• It can communicate with remote web servers in an asynchronous manner

• It requests data from web servers dynamically

37

Asynchronous JavaScript and AJAX

38

Asynchronous JavaScript and AJAX

https://developer.mozilla.org/en-US/docs/Learn/JavaScript

JavaScript: The Definitive Guide, Author: David Flanagan

39

Suggested resources for further reading

https://developer.mozilla.org/en-US/docs/Learn/JavaScript

40

JS editor VS code

41

JS editor VS code

42

JS editor VS code

How to organize your project folder and file structure

43

19 March 2024

<link rel="stylesheet" type="text/css"

href="css/mycss.css">

<script src="js/myscript.js"></script>

44

JS editor VS code

Thank you for watching my JavaScript

presentation

45

Have any questions?

	Slide 1: JavaScript
	Slide 2: Why we need JavaScript?
	Slide 3: Why we need JavaScript?
	Slide 4: Main attributes and properties
	Slide 5: How to Add JavaScript into an HTML Document
	Slide 6: Just-in-time compiler (JIT)
	Slide 7: JavaScript communication with user examples
	Slide 8: JavaScript communication with user examples
	Slide 9: JavaScript engines
	Slide 10: Document Object Model (DOM) tree structure
	Slide 11: Can you count the elements in your structure?
	Slide 12: DOM Manipulation in JavaScript
	Slide 13: JavaScript HTML DOM EventListener
	Slide 14: How to Make JavaScript Execute After HTML Load onload Event
	Slide 15: Execute JavaScript: parser-blocking scripts (synchronous)
	Slide 16
	Slide 17: Asynchronous JavaScript
	Slide 18: Asynchronous JavaScript
	Slide 19: Variable Names
	Slide 20: typeof Operator
	Slide 21: JavaScript Arithmetic Operators Demo
	Slide 22: String in JavaScript
	Slide 23: String methods in JavaScript
	Slide 24: Arrays in JavaScript
	Slide 25: JavaScript and html
	Slide 26: Trigger a click event JavaScript– Button example HTML
	Slide 27: JavaScript Functions
	Slide 28: JavaScript Conditions
	Slide 29: JavaScript Loops
	Slide 30: JavaScript Cookies
	Slide 31
	Slide 32: Object-Oriented Programming With JavaScript (OOP)
	Slide 33
	Slide 34: JavaScript Built-in objects
	Slide 35: Objects and Instances
	Slide 36: JavaScript Custom Objects with functions
	Slide 37: Asynchronous JavaScript and AJAX
	Slide 38: Asynchronous JavaScript and AJAX
	Slide 39: Suggested resources for further reading
	Slide 40: JS editor VS code
	Slide 41: JS editor VS code
	Slide 42: JS editor VS code
	Slide 43: How to organize your project folder and file structure
	Slide 44: JS editor VS code
	Slide 45: Have any questions?

