Axioms of Peano Arithmetic
- (Ax1) \(\forall x.\ \neg(0 = x+1)\)
- (Ax2) \(\forall x.\ \forall y.\ (x+1 = y+1 \Rightarrow x = y)\)
- (Ax3) \(\forall x.\ x+0 = x\)
- (Ax4) \(\forall x.\ \forall y.\ x + (y + 1) = (x + y) + 1\)
- (Ax5) \(\forall x.\ x * 0 = 0\)
- (Ax6) \(\forall x.\ \forall y.\ x * (y + 1) = (x * y) + x\)
- (Ax7) \(A(0) \wedge (\forall x.\ A(x) \Rightarrow A(x+1)) \Rightarrow (\forall x.\ A(x))\)