Powerset Construction
Suppose $N = (Q_N,\,\Sigma,\,\delta_N,\,q_N,\,F_N)$ is an NFA. Then we construct a DFA written $\mathsf{Pow}(N)$, called the powerset automaton, as follows:
\[(Q,\,\Sigma,\,\delta,\,q,\,F)\]where:
- $Q = \mathcal{P}(Q_N)$
- \(\delta(R,a) = \{\bigcup_{q \in R} \delta_N(q,a)\}\)
- \(q = \{q_N\}\)
- $F = \{R \in Q \mid R \cap F_N \neq \emptyset\}$
This guarantees that $L(\mathsf{Pow}(N)) = L(N)$ (but the former is a DFA whereas the latter is an NFA).