Link Search Menu Expand Document

Powerset Construction

Suppose $N = (Q_N,\,\Sigma,\,\delta_N,\,q_N,\,F_N)$ is an NFA. Then we construct a DFA written $\mathsf{Pow}(N)$, called the powerset automaton, as follows:

\[(Q,\,\Sigma,\,\delta,\,q,\,F)\]

where:

  • $Q = \mathcal{P}(Q_N)$
  • \(\delta(R,a) = \{\bigcup_{q \in R} \delta_N(q,a)\}\)
  • \(q = \{q_N\}\)
  • $F = \{R \in Q \mid R \cap F_N \neq \emptyset\}$

This guarantees that $L(\mathsf{Pow}(N)) = L(N)$ (but the former is a DFA whereas the latter is an NFA).